YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Single Seekers Society (Sss): Bringing Together Heuristic Optimization Algorithms for Solving Complex Problems

dc.authorid Baykasoglu, Adil/0000-0002-4952-7239
dc.authorid Akpinar, Sener/0000-0001-8115-7330
dc.authorscopusid 7004171955
dc.authorscopusid 52263627900
dc.authorscopusid 55489939300
dc.authorwosid Akpınar, Şener/O-7141-2019
dc.authorwosid Hamzadayi, Alper/G-3218-2019
dc.authorwosid Baykasoglu, Adil/G-4311-2010
dc.contributor.author Baykasoglu, Adil
dc.contributor.author Hamzadayi, Alper
dc.contributor.author Akpinar, Sener
dc.date.accessioned 2025-05-10T17:33:56Z
dc.date.available 2025-05-10T17:33:56Z
dc.date.issued 2019
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Baykasoglu, Adil; Akpinar, Sener] Dokuz Eylul Univ, Dept Ind Engn, TR-35397 Izmir, Turkey; [Hamzadayi, Alper] Van Yuzuncu Yil Univ, Dept Ind Engn, TR-65080 Van, Turkey en_US
dc.description Baykasoglu, Adil/0000-0002-4952-7239; Akpinar, Sener/0000-0001-8115-7330 en_US
dc.description.abstract This paper introduces a new metaheuristic, Single Seekers Society (SSS) algorithm, for solving unconstrained and constrained continuous optimization problems. The proposed algorithm aims to simulate the behaviour of a group of people living together, both individually and holistically. The SSS algorithm brings together several single-solution based search algorithms, single seekers, while realizing an information sharing mechanism based on the superposition principle and the reproduction procedure. Each single seeker tries to improve one single solution by using randomly generated parameter set until the stopping condition is reached. Then, the SSS algorithm exchanges partial information between the best solutions identified by the single seekers via the reproduction process. This characteristic generates new solutions to set as the starting point of the single seekers for their next run and provides a satisfactory level of diversification for the SSS algorithm. Additionally, the SSS algorithm determines a target point via the superposition principle at each iteration to make the single seekers to direct their discovery towards this target point. Thus, the SSS algorithm has the feature providing to share the information produced by the single seekers through the reproduction and the superposition principle. The performance of the proposed SSS algorithm is tested on the well-known unconstrained and constrained continuous optimization problems through a set of computational studies. This paper compares SSS algorithm against 27 and 17 different search algorithms on unconstrained and constrained problems, respectively. The experimental results indicate the stability and the effectiveness of the SSS algorithm in terms of quality of produced results, achieved level of convergence and the capability of coping with trapping in local optima and stagnation problems. (C) 2018 Elsevier B.V. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.knosys.2018.11.016
dc.identifier.endpage 76 en_US
dc.identifier.issn 0950-7051
dc.identifier.issn 1872-7409
dc.identifier.scopus 2-s2.0-85057214727
dc.identifier.scopusquality Q1
dc.identifier.startpage 53 en_US
dc.identifier.uri https://doi.org/10.1016/j.knosys.2018.11.016
dc.identifier.uri https://hdl.handle.net/20.500.14720/13649
dc.identifier.volume 165 en_US
dc.identifier.wos WOS:000457506400005
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Algorithmic Design en_US
dc.subject Single Seekers en_US
dc.subject Synergistic Phenomena en_US
dc.subject Information Sharing en_US
dc.subject Functional Optimization en_US
dc.title Single Seekers Society (Sss): Bringing Together Heuristic Optimization Algorithms for Solving Complex Problems en_US
dc.type Article en_US

Files