YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modified Minimum Distance Estimators: Definition, Properties and Applications

dc.authorid Senoglu, Birdal/0000-0003-3707-2393
dc.authorscopusid 57524658600
dc.authorscopusid 40460949100
dc.authorscopusid 6506973358
dc.authorwosid Acitas, Sukru/O-5507-2018
dc.authorwosid Arslan, Talha/B-9217-2013
dc.contributor.author Arslan, Talha
dc.contributor.author Acitas, Sukru
dc.contributor.author Senoglu, Birdal
dc.date.accessioned 2025-05-10T17:14:52Z
dc.date.available 2025-05-10T17:14:52Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Arslan, Talha] Van Yuzuncu Yil Univ, Dept Econometr, TR-65080 Van, Turkey; [Acitas, Sukru] Eskisehir Tech Univ, Dept Stat, TR-26470 Eskisehir, Turkey; [Senoglu, Birdal] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey en_US
dc.description Senoglu, Birdal/0000-0003-3707-2393 en_US
dc.description.abstract Estimating the location and scale parameters of a distribution is one of themost crucial issues in Statistics. Therefore, various estimators are proposed for estimating them, such as maximum likelihood, method of moments and minimum distance (e.g. Cramervon Mises-CvM and Anderson Darling-AD), etc. However, in most of the cases, estimators of the location parameter mu and scale parameter s cannot be obtained in closed forms because of the nonlinear function(s) included in the corresponding estimating equations. Therefore, numerical methods are used to obtain the estimates of these parameters. However, they may have some drawbacks such as multiple roots, wrong convergency, and non-convergency of iterations. In this study, we adopt the idea of Tiku (Biometrika 54:155-165, 1967) into the CvM and AD methodologies with the intent of eliminating the aforementioned difficulties and obtaining closed form estimators of the parameters mu and s. Resulting estimators are called as modified CvM (MCvM) and modified AD (MAD), respectively. Proposed estimators are expressed as functions of sample observations and thus their calculations are straightforward. This property also allows us to avoid computational cost of iteration. A Monte-Carlo simulation study is conducted to compare the efficiencies of the CvM and AD estimators with their modified counterparts, i.e. the MCvM and MAD, for the normal, extreme value and Weibull distributions for an illustration. Real data sets are used to show the implementation of the proposed estimation methodologies. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00180-021-01170-8
dc.identifier.endpage 1568 en_US
dc.identifier.issn 0943-4062
dc.identifier.issn 1613-9658
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85119254060
dc.identifier.scopusquality Q2
dc.identifier.startpage 1551 en_US
dc.identifier.uri https://doi.org/10.1007/s00180-021-01170-8
dc.identifier.uri https://hdl.handle.net/20.500.14720/8473
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000720222100001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Minimum Distance Estimators en_US
dc.subject Modified Estimating Equations en_US
dc.subject Efficiency en_US
dc.subject Monte Carlo Simulation en_US
dc.title Modified Minimum Distance Estimators: Definition, Properties and Applications en_US
dc.type Article en_US

Files