YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Uniformly Convergent Method for Two Coupled Nonlinear Singularly Perturbed Systems Arising in Chemical Kinetics

dc.authorscopusid 35110362400
dc.authorscopusid 57421535500
dc.authorwosid Cimen, Erkan/J-2065-2017
dc.contributor.author Cimen, Erkan
dc.contributor.author Uncu, Sevket
dc.date.accessioned 2025-05-10T17:24:02Z
dc.date.available 2025-05-10T17:24:02Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Cimen, Erkan] Van Yuzuncu Yil Univ, Fac Educ, Dept Math, TR-65080 Van, Turkiye; [Uncu, Sevket] Van Yuzuncu Yil Univ, Inst Sci, Dept Math, TR-65080 Van, Turkiye en_US
dc.description.abstract The initial value problem for the nonlinear system of singularly perturbed differential equations, which emerges as a model for chemical kinetics, is considered. In order to solve this problem numerically, a novel fitted difference scheme is constructed by the finite difference method on non-uniform meshes, like the Shishkin mesh and the Bakhvalov mesh, using quadrature rules with the remaining terms in integral form. The scheme is proven to achieve almost first-order convergence in the discrete maximum norm on the Shishkin mesh and first-order convergence on the Bakhvalov mesh. Two numerical examples are considered to illustrate the accuracy and performance of the method. In order to show the advantage of the proposed method we compare our results with those obtained by an implicit linear difference scheme. Comparison shows that the proposed method is fast convergent and highly accurate. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.36045/j.bbms.240706
dc.identifier.endpage 649 en_US
dc.identifier.issn 1370-1444
dc.identifier.issn 2034-1970
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85213212652
dc.identifier.scopusquality Q3
dc.identifier.startpage 628 en_US
dc.identifier.uri https://doi.org/10.36045/j.bbms.240706
dc.identifier.uri https://hdl.handle.net/20.500.14720/11081
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:001383210400002
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Belgian Mathematical Soc Triomphe en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Singular Perturbation en_US
dc.subject Finite Difference Method en_US
dc.subject Layer Adapted Meshes en_US
dc.subject Uniform Convergence en_US
dc.title Uniformly Convergent Method for Two Coupled Nonlinear Singularly Perturbed Systems Arising in Chemical Kinetics en_US
dc.type Article en_US

Files