YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Dynamical and Sensitivity Analysis for Fractional Kundu–eckhaus System To Produce Solitary Wave Solutions Via New Mapping Approach

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor and Francis Ltd.

Abstract

The fractional Kundu–Eckhaus (FKE) equation, a nonlinear mathematical model, holds significance in assessing optical fibre communication systems. It takes into account various factors, including dispersion, noise and nonlinearity, which can impact the quality of signal and rates of data transmission in the systems of optical fibre. Utilizing the FKE model can contribute to optimizing the features of optical fibre network. In this academic investigation, an innovative mapping approach is applied to the FKE model to unveil novel soliton solutions. This is achieved through the utilization of beta derivative by employing the new mapping method and computer algebraic system such as Maple. The derived results are expressed in terms of hyperbolic and trigonometric functions. Our study elucidates a variety of soliton patterns such as periodic, dark, kink, bright, singular, dark–bright soliton solutions. To facilitate comprehension, certain solutions are visually depicted through two-dimensional, three-dimensional, and phase plots depicting bifurcation characteristics utilizing Maple software. Furthermore, the sensitivity of the model is explored across diverse initial conditions. Our study establishes a connection between computer science and soliton physics, emphasizing the pivotal role of soliton phenomena in advancing simulations and computational modelling. © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain.

Description

Keywords

Bifurcation, Conformable Derivative, Extinction Wave, Fractional Kundu–Eckhaus Model, New Mapping Method, Sensitivity, Soliton Patterns

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

Q2

Source

Arab Journal of Basic and Applied Sciences

Volume

31

Issue

1

Start Page

393

End Page

404