YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Dynamical and Sensitivity Analysis for Fractional Kundu–eckhaus System To Produce Solitary Wave Solutions Via New Mapping Approach

dc.authorscopusid 57212548674
dc.authorscopusid 57213314244
dc.authorscopusid 56638410400
dc.contributor.author Rehman, A.U.
dc.contributor.author Riaz, M.B.
dc.contributor.author Tunç, O.
dc.date.accessioned 2025-05-10T16:55:17Z
dc.date.available 2025-05-10T16:55:17Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Rehman A.U., Department of Mathematics, University of Management and Technology Lahore, Punjab, Lahore, Pakistan; Riaz M.B., IT4Innovations, VSB–Technical University of Ostrava, Ostrava, Czech Republic, Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon; Tunç O., Department of Computer Programming, Baskale Vocational School, Van Yuzuncu Yil University, Van, Tuşba, Turkey en_US
dc.description.abstract The fractional Kundu–Eckhaus (FKE) equation, a nonlinear mathematical model, holds significance in assessing optical fibre communication systems. It takes into account various factors, including dispersion, noise and nonlinearity, which can impact the quality of signal and rates of data transmission in the systems of optical fibre. Utilizing the FKE model can contribute to optimizing the features of optical fibre network. In this academic investigation, an innovative mapping approach is applied to the FKE model to unveil novel soliton solutions. This is achieved through the utilization of beta derivative by employing the new mapping method and computer algebraic system such as Maple. The derived results are expressed in terms of hyperbolic and trigonometric functions. Our study elucidates a variety of soliton patterns such as periodic, dark, kink, bright, singular, dark–bright soliton solutions. To facilitate comprehension, certain solutions are visually depicted through two-dimensional, three-dimensional, and phase plots depicting bifurcation characteristics utilizing Maple software. Furthermore, the sensitivity of the model is explored across diverse initial conditions. Our study establishes a connection between computer science and soliton physics, emphasizing the pivotal role of soliton phenomena in advancing simulations and computational modelling. © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain. en_US
dc.description.sponsorship Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (90254); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT en_US
dc.identifier.doi 10.1080/25765299.2024.2375667
dc.identifier.endpage 404 en_US
dc.identifier.issn 2576-5299
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85199042437
dc.identifier.scopusquality Q2
dc.identifier.startpage 393 en_US
dc.identifier.uri https://doi.org/10.1080/25765299.2024.2375667
dc.identifier.uri https://hdl.handle.net/20.500.14720/3426
dc.identifier.volume 31 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof Arab Journal of Basic and Applied Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bifurcation en_US
dc.subject Conformable Derivative en_US
dc.subject Extinction Wave en_US
dc.subject Fractional Kundu–Eckhaus Model en_US
dc.subject New Mapping Method en_US
dc.subject Sensitivity en_US
dc.subject Soliton Patterns en_US
dc.title Dynamical and Sensitivity Analysis for Fractional Kundu–eckhaus System To Produce Solitary Wave Solutions Via New Mapping Approach en_US
dc.type Article en_US

Files