YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Data Oversampling and Imbalanced Datasets: an Investigation of Performance for Machine Learning and Feature Engineering

dc.authorid De La Torre, Isabel/0000-0003-3134-7720
dc.authorid Kina, Erol/0000-0002-7785-646X
dc.authorscopusid 57258056900
dc.authorscopusid 59316557400
dc.authorscopusid 57211950161
dc.authorscopusid 57940309600
dc.authorscopusid 58144675200
dc.authorscopusid 55665183400
dc.authorscopusid 55665183400
dc.authorwosid De La Torre, Isabel/B-7064-2008
dc.authorwosid Ashraf, Imran/T-3635-2019
dc.authorwosid Rustam, Furqan/Abe-4772-2020
dc.authorwosid Mujahid, Muhammad/Hzh-8780-2023
dc.authorwosid Kina, Erol/Aib-9448-2022
dc.contributor.author Mujahid, Muhammad
dc.contributor.author Kina, Erol
dc.contributor.author Rustam, Furqan
dc.contributor.author Villar, Monica Gracia
dc.contributor.author Alvarado, Eduardo Silva
dc.contributor.author Diez, Isabel De La Torre
dc.contributor.author Ashraf, Imran
dc.date.accessioned 2025-05-10T17:23:19Z
dc.date.available 2025-05-10T17:23:19Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Mujahid, Muhammad] Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, CCIS, Riyadh 11586, Saudi Arabia; [Kina, Erol] Van Yuzuncu Yil Univ, Ozalp Vocat Sch, TR-65100 Van, Turkiye; [Rustam, Furqan] Univ Coll Dublin, Sch Comp Sci, Dublin D04V1W8, Ireland; [Villar, Monica Gracia; Alvarado, Eduardo Silva] Univ Europea Atlant, Isabel Torres 21, Santander 39011, Spain; [Villar, Monica Gracia] Univ Int Iberoamericana Arecibo, Arecibo, PR 00613 USA; [Villar, Monica Gracia] Univ Int Cuanza, Kuito, Bie, Angola; [Alvarado, Eduardo Silva] Univ Int Iberoamericana, Campeche 24560, Mexico; [Alvarado, Eduardo Silva] Univ Romana, La Romana, Dominican Rep; [Diez, Isabel De La Torre] Univ Valladolid, Dept Signal Theory & Commun & Telematic Engn, Paseo Belen 15, Valladolid 47011, Spain; [Ashraf, Imran] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea en_US
dc.description De La Torre, Isabel/0000-0003-3134-7720; Kina, Erol/0000-0002-7785-646X en_US
dc.description.abstract The classification of imbalanced datasets is a prominent task in text mining and machine learning. The number of samples in each class is not uniformly distributed; one class contains a large number of samples while the other has a small number. Overfitting of the model occurs as a result of imbalanced datasets, resulting in poor performance. In this study, we compare different oversampling techniques like synthetic minority oversampling technique (SMOTE), support vector machine SMOTE (SVM-SMOTE), Border-line SMOTE, K-means SMOTE, and adaptive synthetic (ADASYN) oversampling to address the issue of imbalanced datasets and enhance the performance of machine learning models. Preprocessing significantly enhances the quality of input data by reducing noise, redundant data, and unnecessary data. This enables the machines to identify crucial patterns that facilitate the extraction of significant and pertinent information from the preprocessed data. This study preprocesses the data using various top-level preprocessing steps. Furthermore, two imbalanced Twitter datasets are used to compare the performance of oversampling techniques with six machine learning models including random forest (RF), SVM, K-nearest neighbor (KNN), AdaBoost (ADA), logistic regression (LR), and decision tree (DT). In addition, the bag of words (BoW) and term frequency and inverse document frequency (TF-IDF) features extraction approaches are used to extract features from the tweets. The experiments indicate that SMOTE and ADASYN perform much better than other techniques thus providing higher accuracy. Additionally, overall results show that SVM with 'linear' kernel tends to attain the highest accuracy and recall score of 99.67% and 1.00% on ADASYN oversampled datasets and 99.57% accuracy on SMOTE oversampled dataset with TF-IDF features. The SVM model using 10-fold cross-validation experiments achieved 97.40 mean accuracy with a 0.008 standard deviation. Our approach achieved 2.62% greater accuracy as compared to other current methods. en_US
dc.description.sponsorship the European University of Atlantic [11586] en_US
dc.description.sponsorship The authors are thankful for the support of Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, 11586, Saudi Arabia. The authors would also like to thank Prince Sultan University, Riyadh Saudi Arabia for the support of APC of this publication. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1186/s40537-024-00943-4
dc.identifier.issn 2196-1115
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85196061053
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1186/s40537-024-00943-4
dc.identifier.uri https://hdl.handle.net/20.500.14720/10851
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:001249724500001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springernature en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Machine Learning en_US
dc.subject Bag Of Words en_US
dc.subject Oversampling Techniques en_US
dc.subject Smote en_US
dc.subject K-Means Smote en_US
dc.title Data Oversampling and Imbalanced Datasets: an Investigation of Performance for Machine Learning and Feature Engineering en_US
dc.type Article en_US

Files