Data Oversampling and Imbalanced Datasets: an Investigation of Performance for Machine Learning and Feature Engineering
dc.authorid | De La Torre, Isabel/0000-0003-3134-7720 | |
dc.authorid | Kina, Erol/0000-0002-7785-646X | |
dc.authorscopusid | 57258056900 | |
dc.authorscopusid | 59316557400 | |
dc.authorscopusid | 57211950161 | |
dc.authorscopusid | 57940309600 | |
dc.authorscopusid | 58144675200 | |
dc.authorscopusid | 55665183400 | |
dc.authorscopusid | 55665183400 | |
dc.authorwosid | De La Torre, Isabel/B-7064-2008 | |
dc.authorwosid | Ashraf, Imran/T-3635-2019 | |
dc.authorwosid | Rustam, Furqan/Abe-4772-2020 | |
dc.authorwosid | Mujahid, Muhammad/Hzh-8780-2023 | |
dc.authorwosid | Kina, Erol/Aib-9448-2022 | |
dc.contributor.author | Mujahid, Muhammad | |
dc.contributor.author | Kina, Erol | |
dc.contributor.author | Rustam, Furqan | |
dc.contributor.author | Villar, Monica Gracia | |
dc.contributor.author | Alvarado, Eduardo Silva | |
dc.contributor.author | Diez, Isabel De La Torre | |
dc.contributor.author | Ashraf, Imran | |
dc.date.accessioned | 2025-05-10T17:23:19Z | |
dc.date.available | 2025-05-10T17:23:19Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Mujahid, Muhammad] Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, CCIS, Riyadh 11586, Saudi Arabia; [Kina, Erol] Van Yuzuncu Yil Univ, Ozalp Vocat Sch, TR-65100 Van, Turkiye; [Rustam, Furqan] Univ Coll Dublin, Sch Comp Sci, Dublin D04V1W8, Ireland; [Villar, Monica Gracia; Alvarado, Eduardo Silva] Univ Europea Atlant, Isabel Torres 21, Santander 39011, Spain; [Villar, Monica Gracia] Univ Int Iberoamericana Arecibo, Arecibo, PR 00613 USA; [Villar, Monica Gracia] Univ Int Cuanza, Kuito, Bie, Angola; [Alvarado, Eduardo Silva] Univ Int Iberoamericana, Campeche 24560, Mexico; [Alvarado, Eduardo Silva] Univ Romana, La Romana, Dominican Rep; [Diez, Isabel De La Torre] Univ Valladolid, Dept Signal Theory & Commun & Telematic Engn, Paseo Belen 15, Valladolid 47011, Spain; [Ashraf, Imran] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea | en_US |
dc.description | De La Torre, Isabel/0000-0003-3134-7720; Kina, Erol/0000-0002-7785-646X | en_US |
dc.description.abstract | The classification of imbalanced datasets is a prominent task in text mining and machine learning. The number of samples in each class is not uniformly distributed; one class contains a large number of samples while the other has a small number. Overfitting of the model occurs as a result of imbalanced datasets, resulting in poor performance. In this study, we compare different oversampling techniques like synthetic minority oversampling technique (SMOTE), support vector machine SMOTE (SVM-SMOTE), Border-line SMOTE, K-means SMOTE, and adaptive synthetic (ADASYN) oversampling to address the issue of imbalanced datasets and enhance the performance of machine learning models. Preprocessing significantly enhances the quality of input data by reducing noise, redundant data, and unnecessary data. This enables the machines to identify crucial patterns that facilitate the extraction of significant and pertinent information from the preprocessed data. This study preprocesses the data using various top-level preprocessing steps. Furthermore, two imbalanced Twitter datasets are used to compare the performance of oversampling techniques with six machine learning models including random forest (RF), SVM, K-nearest neighbor (KNN), AdaBoost (ADA), logistic regression (LR), and decision tree (DT). In addition, the bag of words (BoW) and term frequency and inverse document frequency (TF-IDF) features extraction approaches are used to extract features from the tweets. The experiments indicate that SMOTE and ADASYN perform much better than other techniques thus providing higher accuracy. Additionally, overall results show that SVM with 'linear' kernel tends to attain the highest accuracy and recall score of 99.67% and 1.00% on ADASYN oversampled datasets and 99.57% accuracy on SMOTE oversampled dataset with TF-IDF features. The SVM model using 10-fold cross-validation experiments achieved 97.40 mean accuracy with a 0.008 standard deviation. Our approach achieved 2.62% greater accuracy as compared to other current methods. | en_US |
dc.description.sponsorship | the European University of Atlantic [11586] | en_US |
dc.description.sponsorship | The authors are thankful for the support of Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, 11586, Saudi Arabia. The authors would also like to thank Prince Sultan University, Riyadh Saudi Arabia for the support of APC of this publication. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1186/s40537-024-00943-4 | |
dc.identifier.issn | 2196-1115 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85196061053 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1186/s40537-024-00943-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/10851 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:001249724500001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springernature | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Bag Of Words | en_US |
dc.subject | Oversampling Techniques | en_US |
dc.subject | Smote | en_US |
dc.subject | K-Means Smote | en_US |
dc.title | Data Oversampling and Imbalanced Datasets: an Investigation of Performance for Machine Learning and Feature Engineering | en_US |
dc.type | Article | en_US |