YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Deep Learning-Driven Mri Analysis for Accurate Diagnosis and Grading of Lumbar Spinal Stenosis

dc.authorid Seyyarer, Ebubekir/0000-0002-8981-0266
dc.authorid , Hasan Genc/0009-0002-6366-3146
dc.authorscopusid 59682022800
dc.authorscopusid 57207461582
dc.authorscopusid 57208976075
dc.authorwosid Seyyarer, Ebubekir/Aep-6947-2022
dc.contributor.author Genc, Hasan
dc.contributor.author Seyyarer, Ebubekir
dc.contributor.author Ayata, Faruk
dc.date.accessioned 2025-05-10T17:29:47Z
dc.date.available 2025-05-10T17:29:47Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Genc, Hasan] Elazig Fethi Sekin City Hosp, Radiol Clin, TR-23280 Elazig, Turkiye; [Seyyarer, Ebubekir] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65080 Van, Turkiye; [Ayata, Faruk] Van Yuzuncu Yil Univ, Dept Comp Technol, TR-65090 Van, Turkiye en_US
dc.description Seyyarer, Ebubekir/0000-0002-8981-0266; , Hasan Genc/0009-0002-6366-3146 en_US
dc.description.abstract In recent years, deep neural networks (DNN) have emerged as an important solution due to the increasing complexity of healthcare data. Machine learning (ML) algorithms provide effective and powerful analytical methods that can uncover hidden patterns and important information from large healthcare data sets that cannot be detected in a reasonable time frame using traditional methods. Deep learning (DL) techniques have shown promise in areas such as pattern recognition and diagnosis in healthcare systems. This study aims to contribute to easier interpretation of medical data by applying different DL algorithms to MRI images of the lumbar spine collected between 2020and 2023 in a private clinic. In this context, Convolutional Neural Network (CNN) variations, EfficientNET models and methods such as k-fold cross-validation for more acceptable results, early stopping to save time and Genetic Algorithm (GA) to optimize hyperparameters are preferred. As a result of the study, success rates between 61% and 83.25% are achieved with CNN and between 86.25% and 91.56% with EfficientNET. Overall, this study aims to support medical professionals by mitigating some of the challenges in diagnosis and classification caused by image complexity when interpreting medical data. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.measurement.2025.117294
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-86000722835
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.measurement.2025.117294
dc.identifier.uri https://hdl.handle.net/20.500.14720/12465
dc.identifier.volume 251 en_US
dc.identifier.wos WOS:001449046000001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cnn en_US
dc.subject Efficientnet en_US
dc.subject Lomber Mrg en_US
dc.subject K -Fold en_US
dc.subject Genetic Algorithm en_US
dc.subject Early Stopping en_US
dc.title Deep Learning-Driven Mri Analysis for Accurate Diagnosis and Grading of Lumbar Spinal Stenosis en_US
dc.type Article en_US

Files