YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Identification of Right Ventricular Dysfunction With LogNNet Based Diagnostic Model: a Comparative Study With Supervised ML Algorithms

dc.authorscopusid 57188572324
dc.authorscopusid 35320758400
dc.authorscopusid 56411794800
dc.authorscopusid 57224570513
dc.authorscopusid 58871271800
dc.authorscopusid 23996019200
dc.authorscopusid 13005120600
dc.contributor.author Huyut, M.T.
dc.contributor.author Velichko, A.
dc.contributor.author Belyaev, M.
dc.contributor.author Izotov, Y.
dc.contributor.author Karaoğlanoğlu, Ş.
dc.contributor.author Sertoğullarından, B.
dc.contributor.author Korzun, D.
dc.date.accessioned 2025-07-30T16:33:30Z
dc.date.available 2025-07-30T16:33:30Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Huyut M.T.] Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, 24000, Turkey; [Velichko A.] Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910, Russian Federation; [Belyaev M.] Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910, Russian Federation; [Izotov Y.] Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910, Russian Federation; [Karaoğlanoğlu Ş.] Department of Pulmonary Medicine, Faculty of Medicine, İzmir Katip Çelebi University, Izmir, Turkey; [Sertoğullarından B.] Department of Pulmonary Medicine, Faculty of Medicine, İzmir Katip Çelebi University, Izmir, Turkey; [Keskin S.] Department of Biostatistics, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey; [Korzun D.] Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910, Russian Federation en_US
dc.description.abstract Right ventricular dysfunction (RVD) is strongly associated with increased mortality in patients with acute pulmonary embolism (PE), making its early detection crucial. Identifying RVD risk factors rapidly, accurately, and economically within the acute PE population could significantly improve diagnosis and treatment, potentially reducing mortality rates. This study evaluates the performance of LogNNet and supervised machine learning (ML) models for diagnosing RVD using a repeated stratified hold-out validation procedure. An ensemble-based LogNNet model is proposed for practical application. The LogNNet model identified gender, coronary artery disease, Comorbid Disease (especially hypertension), age (above 74-years), Thrombus segment and un/bilateral Thrombus as the most significant predictors for RVD diagnosis. Additionally, combinations of these features demonstrated high predictive power. LogNNet achieved robust results with only a few selected features, making it suitable for applications in resource-limited environments. LogNNet provides a practical and accessible tool for early RVD detection using PE patient data and has been shown to support applications in healthcare innovations aimed at improving patient outcomes and resilience in edge devices, clinical decision support systems, and challenging environments. Furthermore, these findings could be used as promising applications by integrating with advances in digital health and human health monitoring systems, such as bionic clothing and smart sensor networks. © The Author(s) 2025. en_US
dc.description.sponsorship Venture Investment Fund of Republic of Karelia; VIF RK; Russian Science Foundation, RSF, (22-11-20040); Russian Science Foundation, RSF en_US
dc.identifier.doi 10.1038/s41598-025-00274-1
dc.identifier.issn 2045-2322
dc.identifier.issue 1 en_US
dc.identifier.pmid 40651972
dc.identifier.scopus 2-s2.0-105010577950
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1038/s41598-025-00274-1
dc.identifier.uri https://hdl.handle.net/20.500.14720/28134
dc.identifier.volume 15 en_US
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Nature Research en_US
dc.relation.ispartof Scientific Reports en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Diagnostic Models en_US
dc.subject Edge Computing en_US
dc.subject Feature Selection en_US
dc.subject LogNNet en_US
dc.subject Machine Learning en_US
dc.subject Medical IoT en_US
dc.subject Predictive Analytics en_US
dc.subject Pulmonary Embolism en_US
dc.subject Right Ventricular Dysfunction en_US
dc.subject Risk Assessment en_US
dc.subject Thrombosis en_US
dc.title Identification of Right Ventricular Dysfunction With LogNNet Based Diagnostic Model: a Comparative Study With Supervised ML Algorithms en_US
dc.type Article en_US

Files