YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Feature Selection With the Whale Optimization Algorithm and Artificial Neural Network

dc.authorscopusid 56565518400
dc.authorscopusid 36779318200
dc.authorwosid Canayaz, Murat/Agd-2513-2022
dc.authorwosid Demi̇r, Murat/Aae-3081-2020
dc.contributor.author Canayaz, M.
dc.contributor.author Demir, M.
dc.date.accessioned 2025-05-10T17:01:08Z
dc.date.available 2025-05-10T17:01:08Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Canayaz M., Bilgisayar Mühendisliǧi Bölümü, Van Yüzüncü Yil Üniversitesi, Van, Turkey; Demir M., Bilgisayar Mühendisliǧi Bölümü, Muş Alparslan Üniversitesi, Muş, Turkey en_US
dc.description.abstract Feature selection is addressed an important problem in data mining. To be high dimension of the data obtained from the sources is encountered as an issue in many issues such as computation cost. For this reason, eliminating the unnecessary ones among these data and choosing the appropriate ones makes it possible to evaluate the information correctly. In this study, it is tried to suggest a method that can be used in feature selection on data sets. In this method, The Whale Optimization Algorithm, which is one of the new meta-heuristic algorithms, is used to select appropriate features. Training with artificial neural networks takes place during the evaluation process of selected features. At the end of the training, the features that provide the minimum error value are selected. In the performance evaluation of the method, known data sets will be used and the results will be given in comparison with the Particle Swarm Optimization method. © 2017 IEEE. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/IDAP.2017.8090247
dc.identifier.isbn 9781538618806
dc.identifier.scopus 2-s2.0-85039900934
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/IDAP.2017.8090247
dc.identifier.uri https://hdl.handle.net/20.500.14720/5061
dc.identifier.wos WOS:000426868700087
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof IDAP 2017 - International Artificial Intelligence and Data Processing Symposium -- 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- Malatya -- 115012 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Feature Selection en_US
dc.subject Whale Optimization Algorithm en_US
dc.title Feature Selection With the Whale Optimization Algorithm and Artificial Neural Network en_US
dc.type Conference Object en_US

Files