YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Artificial Hummingbird Optimizer as a Novel Adaptive Algorithm for Identifying Optimal Coefficients of Digital Iir Filtering Systems

dc.authorid Izci, Davut/0000-0001-8359-0875
dc.authorid Ekinci, Serdar/0000-0002-7673-2553
dc.authorscopusid 57186395300
dc.authorscopusid 57201318149
dc.authorscopusid 26031603700
dc.authorwosid Kayri, Murat/Hlh-4902-2023
dc.authorwosid Izci, Davut/T-6000-2019
dc.authorwosid Ekinci, Serdar/Aaa-7422-2019
dc.contributor.author Ekinci, Serdar
dc.contributor.author Izci, Davut
dc.contributor.author Kayri, Murat
dc.date.accessioned 2025-05-10T17:21:36Z
dc.date.available 2025-05-10T17:21:36Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Ekinci, Serdar; Izci, Davut] Batman Univ, Dept Comp Engn, Batman, Turkiye; [Izci, Davut] Middle East Univ, MEU Res Unit, Amman, Jordan; [Kayri, Murat] Van Yuzuncu Yil Univ, Dept Comp & Instruct Technol Educ, Van, Turkiye; [Izci, Davut] Batman Univ, Dept Comp Engn, TR-72100 Batman, Turkiye en_US
dc.description Izci, Davut/0000-0001-8359-0875; Ekinci, Serdar/0000-0002-7673-2553 en_US
dc.description.abstract This paper introduces the artificial hummingbird algorithm (AHA) as a novel and efficient algorithm for designing digital infinite impulse response (IIR) filtering systems. IIR filters are commonly used in various applications, and their design often involves complex error surfaces and coefficients. The AHA aims to address these challenges by optimizing the IIR model using mean squared error (MSE) cost function. Four benchmark examples are considered for evaluation by comparing both the same and reduced order cases of the IIR model. The results are compared against recent and efficient algorithms named prairie dog optimization, whale optimization algorithm, and artificial bee colony algorithm. The evaluation includes an analysis of the obtained coefficients, statistical measures, and convergence profiles. The findings show that the AHA outperforms the competing algorithms, achieving more accurate models and providing better statistical performance. Additionally, the AHA consistently converges to the lowest MSE values for each case. Further assessments are conducted using various examples from the literature, which validate the AHA's superior ability in digital IIR filtering design. The algorithm demonstrates more accurate identification and achieves lower MSE values compared to alternative methods which highlight the promising potential of the AHA for efficient and precise digital IIR filtering system design. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1080/02286203.2023.2240564
dc.identifier.issn 0228-6203
dc.identifier.issn 1925-7082
dc.identifier.scopus 2-s2.0-85165623388
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1080/02286203.2023.2240564
dc.identifier.uri https://hdl.handle.net/20.500.14720/10458
dc.identifier.wos WOS:001033137600001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Digital Iir Filters en_US
dc.subject System Identification en_US
dc.subject Artificial Hummingbird Algorithm en_US
dc.subject Swarm-Based Optimization en_US
dc.title Artificial Hummingbird Optimizer as a Novel Adaptive Algorithm for Identifying Optimal Coefficients of Digital Iir Filtering Systems en_US
dc.type Article en_US

Files