Bifurcation Analysis and Chaos of a Discrete-Time Kolmogorov Model
dc.authorid | Khan, Abdul Quaiyoom/0000-0002-5774-6845 | |
dc.authorid | Khan, Abdul Qadeer/0000-0002-0278-1352 | |
dc.authorscopusid | 55884583300 | |
dc.authorscopusid | 58364129200 | |
dc.authorscopusid | 56638410400 | |
dc.authorscopusid | 57225355490 | |
dc.authorscopusid | 57260590000 | |
dc.authorscopusid | 57984765800 | |
dc.authorwosid | Tunç, Osman/Gre-9544-2022 | |
dc.authorwosid | Khan, Sher/H-2958-2012 | |
dc.contributor.author | Khan, A. Q. | |
dc.contributor.author | Khaliq, S. | |
dc.contributor.author | Tunc, O. | |
dc.contributor.author | Khaliq, A. | |
dc.contributor.author | Javaid, M. B. | |
dc.contributor.author | Ahmed, I | |
dc.date.accessioned | 2025-05-10T17:08:09Z | |
dc.date.available | 2025-05-10T17:08:09Z | |
dc.date.issued | 2021 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Khan, A. Q.; Khaliq, S.; Javaid, M. B.] Univ Azad Jammu & Kashmir, Dept Math, Muzaffarabad 13100, Pakistan; [Tunc, O.] Van Yuzuncu Yil Univ, Dept Comp Programing, Baskale Vocat Sch, Van, Turkey; [Khaliq, A.] Riphah Int Univ, Dept Math, Lahore, Pakistan; [Ahmed, I] Mirpur Univ Sci & Technol MUST, Dept Math, Mirpur, Pakistan | en_US |
dc.description | Khan, Abdul Quaiyoom/0000-0002-5774-6845; Khan, Abdul Qadeer/0000-0002-0278-1352 | en_US |
dc.description.abstract | In this paper, we explore local dynamical characteristics with different topological classifications at fixed points, bifurcations and chaos in the discrete Kolmogorov model. More precisely, we investigate the existence of trivial, boundary and interior fixed points of the discrete Kolmogorov model by algebraic techniques. We prove that for all involved parameters, the discrete Kolmogorov model has trivial and two boundary fixed points, and the interior fixed point under specific parametric condition. Further we explore the local dynamics with topological classifications at fixed points and existence of periodic points of the discrete Kolmogorov model simultaneously. We also explore the occurrence of bifurcation at fixed points and prove that at boundary points there exists no flip bifurcation but it occurs at the interior fixed point. Moreover, we utilize feedback control method to stabilize chaos appears in the Kolmogorov model. Finally, we present numerical simulations to verify corresponding theoretical results and also reveal some new dynamics. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/16583655.2021.2014679 | |
dc.identifier.endpage | 1067 | en_US |
dc.identifier.issn | 1658-3655 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85140461657 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1054 | en_US |
dc.identifier.uri | https://doi.org/10.1080/16583655.2021.2014679 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/6993 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000731172900001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Discrete Kolmogorov Model | en_US |
dc.subject | Numerical Simulation | en_US |
dc.subject | Bifurcation | en_US |
dc.subject | Chaos | en_US |
dc.title | Bifurcation Analysis and Chaos of a Discrete-Time Kolmogorov Model | en_US |
dc.type | Article | en_US |