YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bifurcation Analysis and Chaos of a Discrete-Time Kolmogorov Model

dc.authorid Khan, Abdul Quaiyoom/0000-0002-5774-6845
dc.authorid Khan, Abdul Qadeer/0000-0002-0278-1352
dc.authorscopusid 55884583300
dc.authorscopusid 58364129200
dc.authorscopusid 56638410400
dc.authorscopusid 57225355490
dc.authorscopusid 57260590000
dc.authorscopusid 57984765800
dc.authorwosid Tunç, Osman/Gre-9544-2022
dc.authorwosid Khan, Sher/H-2958-2012
dc.contributor.author Khan, A. Q.
dc.contributor.author Khaliq, S.
dc.contributor.author Tunc, O.
dc.contributor.author Khaliq, A.
dc.contributor.author Javaid, M. B.
dc.contributor.author Ahmed, I
dc.date.accessioned 2025-05-10T17:08:09Z
dc.date.available 2025-05-10T17:08:09Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khan, A. Q.; Khaliq, S.; Javaid, M. B.] Univ Azad Jammu & Kashmir, Dept Math, Muzaffarabad 13100, Pakistan; [Tunc, O.] Van Yuzuncu Yil Univ, Dept Comp Programing, Baskale Vocat Sch, Van, Turkey; [Khaliq, A.] Riphah Int Univ, Dept Math, Lahore, Pakistan; [Ahmed, I] Mirpur Univ Sci & Technol MUST, Dept Math, Mirpur, Pakistan en_US
dc.description Khan, Abdul Quaiyoom/0000-0002-5774-6845; Khan, Abdul Qadeer/0000-0002-0278-1352 en_US
dc.description.abstract In this paper, we explore local dynamical characteristics with different topological classifications at fixed points, bifurcations and chaos in the discrete Kolmogorov model. More precisely, we investigate the existence of trivial, boundary and interior fixed points of the discrete Kolmogorov model by algebraic techniques. We prove that for all involved parameters, the discrete Kolmogorov model has trivial and two boundary fixed points, and the interior fixed point under specific parametric condition. Further we explore the local dynamics with topological classifications at fixed points and existence of periodic points of the discrete Kolmogorov model simultaneously. We also explore the occurrence of bifurcation at fixed points and prove that at boundary points there exists no flip bifurcation but it occurs at the interior fixed point. Moreover, we utilize feedback control method to stabilize chaos appears in the Kolmogorov model. Finally, we present numerical simulations to verify corresponding theoretical results and also reveal some new dynamics. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/16583655.2021.2014679
dc.identifier.endpage 1067 en_US
dc.identifier.issn 1658-3655
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85140461657
dc.identifier.scopusquality Q1
dc.identifier.startpage 1054 en_US
dc.identifier.uri https://doi.org/10.1080/16583655.2021.2014679
dc.identifier.uri https://hdl.handle.net/20.500.14720/6993
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000731172900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Discrete Kolmogorov Model en_US
dc.subject Numerical Simulation en_US
dc.subject Bifurcation en_US
dc.subject Chaos en_US
dc.title Bifurcation Analysis and Chaos of a Discrete-Time Kolmogorov Model en_US
dc.type Article en_US

Files