Investigation of S1046 Profile Bladed Vertical Axis Wind Turbine and Artificial Intelligence-Based Performance Evaluation
dc.authorid | Akansu, Selahaddin Orhan/0000-0002-0085-7915 | |
dc.authorid | Akansu, Yahya Erkan/0000-0003-0691-3225 | |
dc.authorscopusid | 58482374500 | |
dc.authorscopusid | 6603264417 | |
dc.authorscopusid | 55364407100 | |
dc.authorscopusid | 8624610800 | |
dc.authorscopusid | 6602857988 | |
dc.authorwosid | Akansu, Selahaddin/Aal-4052-2020 | |
dc.authorwosid | Akansu, Yahya/W-1619-2017 | |
dc.authorwosid | Azgınoğlu, Nuh/G-7335-2019 | |
dc.authorwosid | Develi, Ibrahim/A-8997-2012 | |
dc.contributor.author | Osmanli, Suleyman | |
dc.contributor.author | Akansu, Selahaddin Orhan | |
dc.contributor.author | Azginoglu, Nuh | |
dc.contributor.author | Akansu, Yahya Erkan | |
dc.contributor.author | Develi, Ibrahim | |
dc.date.accessioned | 2025-05-10T17:21:35Z | |
dc.date.available | 2025-05-10T17:21:35Z | |
dc.date.issued | 2023 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Osmanli, Suleyman; Akansu, Selahaddin Orhan] Erciyes Univ, Fac Engn, Dept Mech Engn, Kayseri, Turkiye; [Osmanli, Suleyman] Van Yuzuncu Yil Univ, Fac Engn, Dept Mech Engn, Van, Turkiye; [Azginoglu, Nuh] Kayseri Univ, Engn Architecture & Design Fac, Dept Comp Engn, Kayseri, Turkiye; [Akansu, Yahya Erkan] Nigde Omer Halisdemir Univ, Fac Engn, Dept Mech Engn, Nigde, Turkiye; [Develi, Ibrahim] Erciyes Univ, Fac Engn, Dept Elect Elect Engn, Kayseri, Turkiye; [Osmanli, Suleyman] Erciyes Univ, Fac Engn, Dept Mech Engn, TR-38280 Kayseri, Turkiye | en_US |
dc.description | Akansu, Selahaddin Orhan/0000-0002-0085-7915; Akansu, Yahya Erkan/0000-0003-0691-3225 | en_US |
dc.description.abstract | It is very important to determine the parameters affecting the performance of the Darrieus-type wind turbine and its effects. In particular, it should be specified at which TSR value the peak power coefficient is obtained. In this study, standard and modified S1046 airfoils and aspect ratios (H/D), angle of attack (AoA), turbulent/non-turbulent flow (WT), number of blades (N), and chord length (C) were tested. Then, four different machines learning-based multi-output regression models (Decision Tree, Linear Regression, K-Nearest Neighbors, and Random Forest) were trained to make performance predictions with the data obtained from the evaluated test setup. Thirdly, feature selection based on the Random Forest algorithm, which is the best performing multi-output regression model, was performed using data due to changing parameter values on the established system. The importance of the parameters was determined. The operating range of the system was at relatively low TSR values. When analyzing the blade profile, the modified blade version performed better in certain combinations compared to the standard profile. Maximum power coefficient (Cp) was obtained from the modified turbine structure with 5 degrees of attack angle, H/D = 1.85, and C = 60 mm. The present study aims to increase the turbine's power coefficient and aims to predict results as power coefficient without doing many different experiments. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey, TUBITAK [FDA-2018-8258, 315M478]; Bilimsel Arastirma Projeleri, Erciyes UEniversitesi [FDA-2018-8258]; Turkiye Bilimsel ve Teknolojik Arastirma Kurumu [315M478] | en_US |
dc.description.sponsorship | The work was supported by the & nbsp;Bilimsel Arastirma Projeleri, Erciyes UEniversitesi [FDA-2018-8258]; Turkiye Bilimsel ve Teknolojik Arastirma Kurumu [315M478]. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/15567036.2023.2230930 | |
dc.identifier.endpage | 8790 | en_US |
dc.identifier.issn | 1556-7036 | |
dc.identifier.issn | 1556-7230 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85164518379 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 8771 | en_US |
dc.identifier.uri | https://doi.org/10.1080/15567036.2023.2230930 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/10449 | |
dc.identifier.volume | 45 | en_US |
dc.identifier.wos | WOS:001023860400001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Vawt | en_US |
dc.subject | Turbine | en_US |
dc.subject | Wind | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | Multi-Output Regression | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Energy | en_US |
dc.title | Investigation of S1046 Profile Bladed Vertical Axis Wind Turbine and Artificial Intelligence-Based Performance Evaluation | en_US |
dc.type | Article | en_US |