YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Investigation of S1046 Profile Bladed Vertical Axis Wind Turbine and Artificial Intelligence-Based Performance Evaluation

dc.authorid Akansu, Selahaddin Orhan/0000-0002-0085-7915
dc.authorid Akansu, Yahya Erkan/0000-0003-0691-3225
dc.authorscopusid 58482374500
dc.authorscopusid 6603264417
dc.authorscopusid 55364407100
dc.authorscopusid 8624610800
dc.authorscopusid 6602857988
dc.authorwosid Akansu, Selahaddin/Aal-4052-2020
dc.authorwosid Akansu, Yahya/W-1619-2017
dc.authorwosid Azgınoğlu, Nuh/G-7335-2019
dc.authorwosid Develi, Ibrahim/A-8997-2012
dc.contributor.author Osmanli, Suleyman
dc.contributor.author Akansu, Selahaddin Orhan
dc.contributor.author Azginoglu, Nuh
dc.contributor.author Akansu, Yahya Erkan
dc.contributor.author Develi, Ibrahim
dc.date.accessioned 2025-05-10T17:21:35Z
dc.date.available 2025-05-10T17:21:35Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Osmanli, Suleyman; Akansu, Selahaddin Orhan] Erciyes Univ, Fac Engn, Dept Mech Engn, Kayseri, Turkiye; [Osmanli, Suleyman] Van Yuzuncu Yil Univ, Fac Engn, Dept Mech Engn, Van, Turkiye; [Azginoglu, Nuh] Kayseri Univ, Engn Architecture & Design Fac, Dept Comp Engn, Kayseri, Turkiye; [Akansu, Yahya Erkan] Nigde Omer Halisdemir Univ, Fac Engn, Dept Mech Engn, Nigde, Turkiye; [Develi, Ibrahim] Erciyes Univ, Fac Engn, Dept Elect Elect Engn, Kayseri, Turkiye; [Osmanli, Suleyman] Erciyes Univ, Fac Engn, Dept Mech Engn, TR-38280 Kayseri, Turkiye en_US
dc.description Akansu, Selahaddin Orhan/0000-0002-0085-7915; Akansu, Yahya Erkan/0000-0003-0691-3225 en_US
dc.description.abstract It is very important to determine the parameters affecting the performance of the Darrieus-type wind turbine and its effects. In particular, it should be specified at which TSR value the peak power coefficient is obtained. In this study, standard and modified S1046 airfoils and aspect ratios (H/D), angle of attack (AoA), turbulent/non-turbulent flow (WT), number of blades (N), and chord length (C) were tested. Then, four different machines learning-based multi-output regression models (Decision Tree, Linear Regression, K-Nearest Neighbors, and Random Forest) were trained to make performance predictions with the data obtained from the evaluated test setup. Thirdly, feature selection based on the Random Forest algorithm, which is the best performing multi-output regression model, was performed using data due to changing parameter values on the established system. The importance of the parameters was determined. The operating range of the system was at relatively low TSR values. When analyzing the blade profile, the modified blade version performed better in certain combinations compared to the standard profile. Maximum power coefficient (Cp) was obtained from the modified turbine structure with 5 degrees of attack angle, H/D = 1.85, and C = 60 mm. The present study aims to increase the turbine's power coefficient and aims to predict results as power coefficient without doing many different experiments. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey, TUBITAK [FDA-2018-8258, 315M478]; Bilimsel Arastirma Projeleri, Erciyes UEniversitesi [FDA-2018-8258]; Turkiye Bilimsel ve Teknolojik Arastirma Kurumu [315M478] en_US
dc.description.sponsorship The work was supported by the & nbsp;Bilimsel Arastirma Projeleri, Erciyes UEniversitesi [FDA-2018-8258]; Turkiye Bilimsel ve Teknolojik Arastirma Kurumu [315M478]. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/15567036.2023.2230930
dc.identifier.endpage 8790 en_US
dc.identifier.issn 1556-7036
dc.identifier.issn 1556-7230
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85164518379
dc.identifier.scopusquality Q2
dc.identifier.startpage 8771 en_US
dc.identifier.uri https://doi.org/10.1080/15567036.2023.2230930
dc.identifier.uri https://hdl.handle.net/20.500.14720/10449
dc.identifier.volume 45 en_US
dc.identifier.wos WOS:001023860400001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Vawt en_US
dc.subject Turbine en_US
dc.subject Wind en_US
dc.subject Feature Selection en_US
dc.subject Multi-Output Regression en_US
dc.subject Machine Learning en_US
dc.subject Energy en_US
dc.title Investigation of S1046 Profile Bladed Vertical Axis Wind Turbine and Artificial Intelligence-Based Performance Evaluation en_US
dc.type Article en_US

Files