YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Effects of Data Augmentation Methods on Yolo V5s: Application of Deep Learning With Pytorch for Individual Cattle Identification

dc.authorscopusid 57211336993
dc.authorscopusid 55372727900
dc.contributor.author Bati, C.T.
dc.contributor.author Ser, G.
dc.date.accessioned 2025-05-10T16:54:30Z
dc.date.available 2025-05-10T16:54:30Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Bati C.T., Van Yuzuncu Yil University, Faculty of Agriculture, Department of Animal Science, Van, Turkey; Ser G., Van Yuzuncu Yil University, Faculty of Agriculture, Department of Animal Science, Van, Turkey en_US
dc.description.abstract In this paper, we investigate the performance of the YOLO v5s (You Only Look Once) model for the identification of individual cattle in a cattle herd. The model is a popular method for real-time object detection, accuracy, and speed. However, since the videos obtained from the cattle herd consist of free space images, the number of frames in the data is unbalanced. This negatively affects the performance of the YOLOv5 model. First, we investigate the model performance on the unbalanced initial dataset obtained from raw images, then we stabilize the initial dataset using some data augmentation methods and obtain the model performance. Finally, we built the target detection model and achieved excellent model performance with an mAP (mean average precision) of 99.5% on the balanced dataset compared to the model on the unbalanced data (mAP of 95.8%). The experimental results show that YOLO v5s has a good potential for automatic cattle identification, but with the use of data augmentation methods, superior performance can be obtained from the model. © 2023, Centenary University. All rights reserved. en_US
dc.identifier.doi 10.29133/yyutbd.1246901
dc.identifier.endpage 376 en_US
dc.identifier.issn 1308-7576
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85173962000
dc.identifier.scopusquality Q3
dc.identifier.startpage 363 en_US
dc.identifier.trdizinid 1200170
dc.identifier.uri https://doi.org/10.29133/yyutbd.1246901
dc.identifier.uri https://hdl.handle.net/20.500.14720/3154
dc.identifier.volume 33 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Centenary University en_US
dc.relation.ispartof Yuzuncu Yil University Journal of Agricultural Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cattle en_US
dc.subject Data Augmentation en_US
dc.subject Object Detection en_US
dc.subject Yolo en_US
dc.title Effects of Data Augmentation Methods on Yolo V5s: Application of Deep Learning With Pytorch for Individual Cattle Identification en_US
dc.type Article en_US

Files