Exponential Stability in the L P-Norm of Nonlinear Coupled Hyperbolic Spatially Inhomogeneous Systems
dc.authorid | Vitaliy, Slyn'Ko/0000-0002-2321-922X | |
dc.authorscopusid | 6603780508 | |
dc.authorscopusid | 56638410400 | |
dc.authorscopusid | 57200760207 | |
dc.authorwosid | Tunç, Osman/Gre-9544-2022 | |
dc.contributor.author | Slynko, Vitalii | |
dc.contributor.author | Tunc, Osman | |
dc.contributor.author | Atamas, Ivan | |
dc.date.accessioned | 2025-05-10T17:23:55Z | |
dc.date.available | 2025-05-10T17:23:55Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Slynko, Vitalii] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Nesterov Str 3, UA-02053 Kiev, Ukraine; [Tunc, Osman] Van Yuzuncu Yil Univ, Baskale Vocat Sch, Dept Comp Programing, Campus, TR-65080 Van, Turkiye; [Atamas, Ivan] Univ Wurzburg, Inst Math, Emil-F-Str 40, D-97074 Wurzburg, Germany | en_US |
dc.description | Vitaliy, Slyn'Ko/0000-0002-2321-922X | en_US |
dc.description.abstract | We study exponential stability of equilibrium in the L (P) -norm (1 < P <= infinity, P not equal 2) of nonlinear 1D systems of hyperbolic equations. A method of construction of Lyapunov functions based on the W. Magnus representation of fundamental solutions of ordinary differential equation (ODE) linear systems is proposed. Sufficient conditions for exponential L (P) -stability (1 < P < infinity, P not equal 2) are obtained and sufficient conditions for exponential L (infinity) -stability are derived by passing to the limit. The obtained results are compared with the well-known results. | en_US |
dc.description.sponsorship | German Research Foundation (DFG) [SL 343/1-1]; Deutscher Akademischer Austauschdienst (DAAD) [91775148] | en_US |
dc.description.sponsorship | This research was supported by the German Research Foundation (DFG) , grant No. SL 343/1-1 and Deutscher Akademischer Austauschdienst (DAAD) , Personal ref. no.: 91775148. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1016/j.amc.2024.128632 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.scopus | 2-s2.0-85186771547 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2024.128632 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/11036 | |
dc.identifier.volume | 472 | en_US |
dc.identifier.wos | WOS:001217613800001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lyapunov Function | en_US |
dc.subject | Nonlinear Hyperbolic Systems | en_US |
dc.subject | L-P-Norm | en_US |
dc.subject | Exponential Stability | en_US |
dc.subject | Magnus Series | en_US |
dc.title | Exponential Stability in the L P-Norm of Nonlinear Coupled Hyperbolic Spatially Inhomogeneous Systems | en_US |
dc.type | Article | en_US |