YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sensing Ivacaftor Accomplished Using the Square-Wave Voltammetric Technique With the Assistance of a Cationic Surfactant on a Boron-Doped Diamond Electrode

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Abstract

This investigation aims to describe the voltammetric analysis of ivacaftor (IVA) by utilizing the boron -doped diamond (BDD) electrode to add a cationic surfactant. Cyclic voltammetry via Britton-Robinson (BR, 0.04 mol L-1, pH 2.0) buffer was used to perform determinations of the IVA demonstrating irreversible behaviors, adsorption-controlled and well-defined (+1.04 V, PA1) and an ill-defined (+1.42 V, PA2) oxidation peaks (vs. Ag/ AgCl). The findings revealed that the oxidation peaks of IVA are pH-dependent (ranging from 2.0 to 5.0). The use of cetyltrimethylammonium bromide (CTAB, cationic surfactant) in the chosen supporting electrolyte enormously raised the oxidation peak currents of IVA. For the measurement of IVA in a 0.04 mol L-1 BR buffer solution with a pH of 2.0, the linear relationship was discovered to exist under the conditions of the experimental optimal parameters involving 2 x 10-4 mol L-1 CTAB at +1.11 V (vs. Ag/AgCl) (after an accumulation of 60 s at the open-circuit condition). The linear concentration was discovered using 0.25 to 10.0 mu g mL-1 (6.4 x 10-7-2.5 x 10-5 mol L-1) and the limit of detection 0.073 mu g mL-1 (1.9 x 10-7 mol L-1). The devised methodology was effectively employed to determine IVA in pharmaceutical formulation. To the best of our understanding, it represents the first electroanalytical method for detecting IVA by voltammetry.

Description

Keywords

Ivacaftor, Voltammetric Analysis, Cationic Surfactant, Pharmaceutical Formulation, Boron -Doped Diamond Electrode

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q2

Source

Volume

144

Issue

Start Page

End Page