YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Expert Classification System of Pollen of Onopordum Using a Rough Set Approach

dc.authorid Pinar, Suleyman Mesut/0000-0002-1774-7704
dc.authorid Fidan, Mehmet/0000-0002-0255-9727
dc.authorscopusid 58062717700
dc.authorscopusid 57204819196
dc.authorscopusid 14624783900
dc.authorscopusid 55770864800
dc.authorwosid Fi̇dan, Mehmet/Jwa-6964-2024
dc.authorwosid Kaya, Yılmaz/C-3822-2017
dc.authorwosid Pinar, Suleyman Mesut/Aaq-8898-2020
dc.contributor.author Kaya, Yilmaz
dc.contributor.author Pinar, S. Mesut
dc.contributor.author Erez, M. Emre
dc.contributor.author Fidan, Mehmet
dc.date.accessioned 2025-05-10T16:48:04Z
dc.date.available 2025-05-10T16:48:04Z
dc.date.issued 2013
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kaya, Yilmaz] Siirt Univ, Fac Engn & Architecture, TR-56100 Siirt, Turkey; [Pinar, S. Mesut] Yuzuncu Yil Univ, Fac Sci, Dept Biol, TR-65080 Van, Turkey; [Erez, M. Emre; Fidan, Mehmet] Siirt Univ, Fac Sci & Art, Dept Biol, TR-56100 Siirt, Turkey en_US
dc.description Pinar, Suleyman Mesut/0000-0002-1774-7704; Fidan, Mehmet/0000-0002-0255-9727 en_US
dc.description.abstract Although pollen grains have a complicated 3-dimensional structure, they can be distinguished from one another by their specific and distinctive characteristics. Using microscopic differences between the pollen grains, it may be possible to identify them by family or even at the genus level. However for the identification of pollen grains at the taxon level, we require expert computer systems. For this purpose, we used 20 different pollen types, obtained from the genus Onopordum L (Asteraceae). For each pollen grain, 30 different images were photographed by microscope system and 11 different characteristic features (polar axis, equatorial axis, P/E ratio, colpus length, colpus weight, exine, intine, tectum, nexine, columellea, and echinae length) were measured for the analysis. The data set was formed from 600 samples, obtained from 20 different taxa, with 30 different images. The 440 samples were used for training and the remaining 160 samples were used for testing. The proposed method, a rough set-based expert system, has properly identified 145 of 160 pollen grains correctly. The success of the method for the identification of pollen grains was obtained at 90.625% (145/160). We can expect to achieve more efficient results with different genuses and families, considering the successful results in the same genus. Moreover, using computer-based systems in revision studies will lead us to more accurate and efficient results, and will identify which characters will be more effective for pollen identification. According to the literature, this is the first study for the identification and comparison of pollen of the same genus by using the measurements of distinctive characteristics with computer systems. (C) 2012 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship YYU [2010-FBE-D131] en_US
dc.description.sponsorship This study has been supported by the YYU 2010-FBE-D131 and we thank to Lisaanne Meredith for kindly correcting the English version of the manuscript. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.revpalbo.2012.11.004
dc.identifier.endpage 56 en_US
dc.identifier.issn 0034-6667
dc.identifier.issn 1879-0615
dc.identifier.scopus 2-s2.0-84871782336
dc.identifier.scopusquality Q2
dc.identifier.startpage 50 en_US
dc.identifier.uri https://doi.org/10.1016/j.revpalbo.2012.11.004
dc.identifier.uri https://hdl.handle.net/20.500.14720/1437
dc.identifier.volume 189 en_US
dc.identifier.wos WOS:000314431200006
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Pollen en_US
dc.subject Pollen Identification en_US
dc.subject Expert System en_US
dc.subject Rough Set en_US
dc.title An Expert Classification System of Pollen of Onopordum Using a Rough Set Approach en_US
dc.type Article en_US

Files