YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Molecularly Imprinted Polymer Preparations for Selective Detection of C-Reactive Protein: Thermodynamic and Kinetic Studies

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

C-reactive protein (CRP) is a member of the pentraxin protein group. CRP is considered an acute-phase protein produced by the liver during inflammation in various diseases limited to pathogenic infections. It is very important that serum CRP concentration can be measured quickly, reliably and easily. Therefore, a three-dimensional crosslinked molecularly imprinted polymer (MIP) with selective recognition sites for CRP was synthesized (CRP-MIP) and characterization analyzes (scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis) were performed. The binding abilities of the synthesized polymers by adsorption of CRP in aqueous solution were evaluated in detail and compared with the abilities of an unprinted polymer (CRP-NIP) used as a reference. It was found that the MIP prepared by the printing effect selectively adsorbed the template molecule CRP. For this effect, the selectivity of MIP toward CRP and various positive acute-phase reactants such as alpha 1-antitrypsin and alpha 1-acid glycoprotein was evaluated and high selectivity toward CRP was obtained. CRP-MIP was used to remove CRP from crude human serum, and the recovery was up to 91%. Adsorption process of CRP from aqueous solutions on polymeric adsorbents; equilibrium was evaluated in terms of kinetic and thermodynamic conditions and the necessary parameters to describe the process were calculated under these conditions. Adsorption data: the pseudo-first order kinetic model, the pseudo-second order kinetic model, the Elovich kinetic model and the intraparticle diffusion model were studied and the thermodynamic parameters Delta G degrees, Delta H degrees, and Delta S degrees were calculated.

Description

Keywords

Adsorption Kinetics, C-Reactive Protein, Molecular Imprinted Polymer, Selectivity, Thermodynamics

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q2

Source

Volume

61

Issue

17

Start Page

2002

End Page

2009