Difference Inequalities for the Groups and Semigroups of Operators on Banach Spaces
dc.authorscopusid | 25123084500 | |
dc.contributor.author | Mustafayev, H. S. | |
dc.date.accessioned | 2025-05-10T16:47:14Z | |
dc.date.available | 2025-05-10T16:47:14Z | |
dc.date.issued | 2012 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey | en_US |
dc.description.abstract | Let T = {T (t)}(t is an element of R) be a sigma(X, F)-continuous group of isometries on a Banach space X with generator A, where sigma(X, F) is an appropriate local convex topology on X induced by functionals from F subset of X*. Let sigma(A)(x) be the local spectrum of A at x is an element of X and r(A)(x) := sup{|lambda| : lambda is an element of sigma(A)(x)}, the local spectral radius of A at x. It is shown that for every x is an element of X and tau is an element of R, parallel to T(tau)x - x parallel to <= vertical bar tau vertical bar r(A)(x) parallel to x parallel to. Moreover if 0 <= tau r(A)(x) <= pi/2, then it holds that parallel to T(tau)x - T(-tau)x parallel to <= 2 sin (tau r(A)(x)) parallel to x parallel to. Asymptotic versions of these results for C-0-semigroup of contractions are also obtained. If T = {T(t)}(t >= 0) is a C-0-semigroup of contractions, then for every x is an element of X and tau >= 0, lim(t ->infinity) parallel to T (t + tau)x - T(t)x parallel to <= tau sup {vertical bar lambda vertical bar is an element of sigma(A)(x) boolean AND iR} parallel to x parallel to. Several applications are given. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s11785-010-0126-x | |
dc.identifier.endpage | 1267 | en_US |
dc.identifier.issn | 1661-8254 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-84870393656 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 1241 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11785-010-0126-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/1395 | |
dc.identifier.volume | 6 | en_US |
dc.identifier.wos | WOS:000312126700010 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Mustafayev, H. S. | |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Group (Semigroup) Of Operators | en_US |
dc.subject | Local Spectrum | en_US |
dc.subject | Beurling Spectrum | en_US |
dc.subject | L-P-Space | en_US |
dc.subject | Inequality | en_US |
dc.title | Difference Inequalities for the Groups and Semigroups of Operators on Banach Spaces | en_US |
dc.type | Article | en_US |