YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New Results and Applications on the Existence Results for Nonlinear Coupled Systems

dc.authorid Abdeljawad, Thabet/0000-0002-8889-3768
dc.authorid Talib, Imran/0000-0003-0115-4506
dc.authorscopusid 56328644700
dc.authorscopusid 6508051762
dc.authorscopusid 57211521778
dc.authorscopusid 6603328862
dc.authorscopusid 57016615200
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.authorwosid Alqudah, Manar/Aba-1904-2020
dc.authorwosid Abdeljawad, Thabet/T-8298-2018
dc.contributor.author Talib, Imran
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Alqudah, Manar A.
dc.contributor.author Tunc, Cemil
dc.contributor.author Ameen, Rabia
dc.date.accessioned 2025-05-10T17:12:48Z
dc.date.available 2025-05-10T17:12:48Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Talib, Imran; Ameen, Rabia] Virtual Univ Pakistan, Nonlinear Anal Grp NAG, Math Dept, 54 Lawrence Rd, Lahore, Pakistan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan; [Alqudah, Manar A.] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Fac Sci, POB 84428, Riyadh 11671, Saudi Arabia; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, Van, Turkey en_US
dc.description Abdeljawad, Thabet/0000-0002-8889-3768; Talib, Imran/0000-0003-0115-4506 en_US
dc.description.abstract In this manuscript, we study a certain classical second-order fully nonlinear coupled system with generalized nonlinear coupled boundary conditions satisfying the monotone assumptions. Our new results unify the existence criteria of certain linear and nonlinear boundary value problems (BVPs) that have been previously studied on a case-by-case basis; for example, Dirichlet and Neumann are special cases. The common feature is that the solution of each BVPs lies in a sector defined by well-ordered coupled lower and upper solutions. The tools we use are the coupled lower and upper solutions approach along with some results of fixed point theory. By means of the coupled lower and upper solutions approach, the considered BVPs are logically modified to new problems, known as modified BVPs. The solution of the modified BVPs leads to the solution of the original BVPs. In our case, we only require the Nagumo condition to get a priori bound on the derivatives of the solution function. Further, we extend the results presented in (Franco et al. in Extr. Math. 18(2):153-160, 2003; Franco et al. in Appl. Math. Comput. 153:793-802, 2004; Franco and O'Regan in Arch. Inequal. Appl. 1:423-430, 2003; Asif et al. in Bound. Value Probl. 2015:134, 2015). Finally, as an application, we consider the fully nonlinear coupled mass-spring model. en_US
dc.description.sponsorship Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, Saudi Arabia through the Fast-track Research Funding Program en_US
dc.description.sponsorship This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, Saudi Arabia through the Fast-track Research Funding Program. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1186/s13662-021-03526-2
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85111953639
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-021-03526-2
dc.identifier.uri https://hdl.handle.net/20.500.14720/8001
dc.identifier.volume 2021 en_US
dc.identifier.wos WOS:000683899500003
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fully Nonlinear Coupled Mass-Spring Model en_US
dc.subject Generalized Nonlinear Coupled Boundary Conditions en_US
dc.subject Lower And Upper Solutions Approach en_US
dc.subject Dirichlet Boundary Conditions en_US
dc.subject Neumann Boundary Conditions en_US
dc.title New Results and Applications on the Existence Results for Nonlinear Coupled Systems en_US
dc.type Article en_US

Files