New Results and Applications on the Existence Results for Nonlinear Coupled Systems
dc.authorid | Abdeljawad, Thabet/0000-0002-8889-3768 | |
dc.authorid | Talib, Imran/0000-0003-0115-4506 | |
dc.authorscopusid | 56328644700 | |
dc.authorscopusid | 6508051762 | |
dc.authorscopusid | 57211521778 | |
dc.authorscopusid | 6603328862 | |
dc.authorscopusid | 57016615200 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.authorwosid | Alqudah, Manar/Aba-1904-2020 | |
dc.authorwosid | Abdeljawad, Thabet/T-8298-2018 | |
dc.contributor.author | Talib, Imran | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Alqudah, Manar A. | |
dc.contributor.author | Tunc, Cemil | |
dc.contributor.author | Ameen, Rabia | |
dc.date.accessioned | 2025-05-10T17:12:48Z | |
dc.date.available | 2025-05-10T17:12:48Z | |
dc.date.issued | 2021 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Talib, Imran; Ameen, Rabia] Virtual Univ Pakistan, Nonlinear Anal Grp NAG, Math Dept, 54 Lawrence Rd, Lahore, Pakistan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan; [Alqudah, Manar A.] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Fac Sci, POB 84428, Riyadh 11671, Saudi Arabia; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, Van, Turkey | en_US |
dc.description | Abdeljawad, Thabet/0000-0002-8889-3768; Talib, Imran/0000-0003-0115-4506 | en_US |
dc.description.abstract | In this manuscript, we study a certain classical second-order fully nonlinear coupled system with generalized nonlinear coupled boundary conditions satisfying the monotone assumptions. Our new results unify the existence criteria of certain linear and nonlinear boundary value problems (BVPs) that have been previously studied on a case-by-case basis; for example, Dirichlet and Neumann are special cases. The common feature is that the solution of each BVPs lies in a sector defined by well-ordered coupled lower and upper solutions. The tools we use are the coupled lower and upper solutions approach along with some results of fixed point theory. By means of the coupled lower and upper solutions approach, the considered BVPs are logically modified to new problems, known as modified BVPs. The solution of the modified BVPs leads to the solution of the original BVPs. In our case, we only require the Nagumo condition to get a priori bound on the derivatives of the solution function. Further, we extend the results presented in (Franco et al. in Extr. Math. 18(2):153-160, 2003; Franco et al. in Appl. Math. Comput. 153:793-802, 2004; Franco and O'Regan in Arch. Inequal. Appl. 1:423-430, 2003; Asif et al. in Bound. Value Probl. 2015:134, 2015). Finally, as an application, we consider the fully nonlinear coupled mass-spring model. | en_US |
dc.description.sponsorship | Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, Saudi Arabia through the Fast-track Research Funding Program | en_US |
dc.description.sponsorship | This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, Saudi Arabia through the Fast-track Research Funding Program. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1186/s13662-021-03526-2 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85111953639 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-021-03526-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/8001 | |
dc.identifier.volume | 2021 | en_US |
dc.identifier.wos | WOS:000683899500003 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fully Nonlinear Coupled Mass-Spring Model | en_US |
dc.subject | Generalized Nonlinear Coupled Boundary Conditions | en_US |
dc.subject | Lower And Upper Solutions Approach | en_US |
dc.subject | Dirichlet Boundary Conditions | en_US |
dc.subject | Neumann Boundary Conditions | en_US |
dc.title | New Results and Applications on the Existence Results for Nonlinear Coupled Systems | en_US |
dc.type | Article | en_US |