YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Greedy Randomized Adaptive Search for Dynamic Flexible Job-Shop Scheduling

dc.authorid Madenoglu, Fatma Selen/0000-0002-5577-4471
dc.authorid Baykasoglu, Adil/0000-0002-4952-7239
dc.authorscopusid 7004171955
dc.authorscopusid 57217872446
dc.authorscopusid 52263627900
dc.authorwosid Madenoğlu, Fatma Selen/Abc-1033-2020
dc.authorwosid Hamzadayı, Alper/Abg-8050-2021
dc.authorwosid Baykasoglu, Adil/G-4311-2010
dc.contributor.author Baykasoglu, Adil
dc.contributor.author Madenoglu, Fatma S.
dc.contributor.author Hamzadayi, Alper
dc.date.accessioned 2025-05-10T17:09:07Z
dc.date.available 2025-05-10T17:09:07Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Baykasoglu, Adil] Dokuz Eylul Univ, Dept Ind Engn, Izmir, Turkey; [Madenoglu, Fatma S.] Abdullah Gul Univ, Dept Management Sci, Kayseri, Turkey; [Hamzadayi, Alper] Van Yuzuncu Yil Univ, Dept Ind Engn, Van, Turkey en_US
dc.description Madenoglu, Fatma Selen/0000-0002-5577-4471; Baykasoglu, Adil/0000-0002-4952-7239 en_US
dc.description.abstract Dynamic flexible job shop scheduling problem is studied under the events such as new order arrivals, changes in due dates, machine breakdowns, order cancellations, and appearance of urgent orders. This paper presents a constructive algorithm which can solve FJSP and DFJSP with machine capacity constraints and sequence-dependent setup times, and employs greedy randomized adaptive search procedure (GRASP). Besides, Order Review Release (ORR) mechanism and order acceptance/rejection decisions are also incorporated into the proposed method in order to adjust capacity execution considering customer due date requirements. The lexicographic method is utilized to assess the objectives: schedule instability, makespan, mean tardiness and mean flow time. A group of experiments is also carried out in order to verify the suitability of the GRASP in solving the flexible job shop scheduling problem. Benchmark problems are formed for different problem scales with dynamic events. The event-driven rescheduling strategy is also compared with periodical rescheduling strategy. Results of the extensive computational experiment presents that proposed approach is very effective and can provide reasonable schedules under event-driven and periodic scheduling scenarios. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.jmsy.2020.06.005
dc.identifier.endpage 451 en_US
dc.identifier.issn 0278-6125
dc.identifier.issn 1878-6642
dc.identifier.scopus 2-s2.0-85087781719
dc.identifier.scopusquality Q1
dc.identifier.startpage 425 en_US
dc.identifier.uri https://doi.org/10.1016/j.jmsy.2020.06.005
dc.identifier.uri https://hdl.handle.net/20.500.14720/7053
dc.identifier.volume 56 en_US
dc.identifier.wos WOS:000572349100008
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Flexible Job Shop Scheduling en_US
dc.subject Rescheduling en_US
dc.subject Dynamic Scheduling en_US
dc.subject Grasp en_US
dc.title Greedy Randomized Adaptive Search for Dynamic Flexible Job-Shop Scheduling en_US
dc.type Article en_US

Files