YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modelling Overdispersed Seed Germination Data: Xgboost's Performance

dc.authorscopusid 55372727900
dc.authorscopusid 57211336993
dc.contributor.author Ser, G.
dc.contributor.author Bati, C. T.
dc.date.accessioned 2025-05-10T17:19:59Z
dc.date.available 2025-05-10T17:19:59Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Ser, G.] Van Yuzuncu Yil Univ, Fac Agr, Dept Anim Sci, Van, Turkiye; [Bati, C. T.] Van Yuzuncu Yil Univ, Grad Sch Nat & Appl Sci, Dept Anim Sci, Van, Turkiye en_US
dc.description.abstract Depending on the extent of variability in germination count data, the problem of overdispersion arises. This problem causes significant problems in estimation. In this study, gradient boosting algorithms are used as a new approach to support precision agriculture applications in estimating overdispersed germination counts. The database consisting of germination count data of weed (Amaranthus retroflexus L. and Chenopodium album L) and cultural plants (Beta vulgaris L. and Zea mays L.) with white cabbage seedlings, known for their allelochemical effects, was created. Accordingly, gradient boosting (GB) and extreme gradient boosting (Xgboost) algorithms were first developed for default values to estimate the germination counts of each plant; then, different combinations of hyperparameters were created to optimize the performance of the models. Root mean square error (RMSE), mean poisson deviation (MPD) and coefficient of determination (R2), were used as the statistical criteria for evaluating the performance of the above algorithms. According to the experimental results, the Xgboost algorithm showed superior performance compared to GB in both the default and hyperparameter combinations in the germination counts of A. retroflexus, C. album, B. vulgaris and Z. mays (RMSE: 0.725-2.506 and R2: 0.97-0.99). Our results indicate that the Xgboost made successful predictions of germination counts obtained under experimental conditions. Based on these results, we suggest the use of Xgboost optimal models for larger count data in precision agriculture. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.36899/JAPS.2023.4.0668
dc.identifier.endpage 752 en_US
dc.identifier.issn 1018-7081
dc.identifier.issn 2309-8694
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85167368650
dc.identifier.scopusquality Q3
dc.identifier.startpage 744 en_US
dc.identifier.uri https://doi.org/10.36899/JAPS.2023.4.0668
dc.identifier.uri https://hdl.handle.net/20.500.14720/9965
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:001104797800010
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Pakistan Agricultural Scientists Forum en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Estimation en_US
dc.subject Boosting Algorithms en_US
dc.subject Count Data en_US
dc.subject Germination en_US
dc.title Modelling Overdispersed Seed Germination Data: Xgboost's Performance en_US
dc.type Article en_US

Files