A Couple of Novel Image Enhancement Methods Depending on the Prabhakar Fractional Approaches
dc.authorid | Aydin, Mustafa/0000-0003-0132-9636 | |
dc.authorscopusid | 57226406246 | |
dc.authorscopusid | 57206729270 | |
dc.authorwosid | Topal, Ahmet/Aaf-4831-2020 | |
dc.authorwosid | Aydin, Mustafa/Abd-6124-2020 | |
dc.contributor.author | Topal, Ahmet | |
dc.contributor.author | Aydin, Mustafa | |
dc.date.accessioned | 2025-05-10T17:25:30Z | |
dc.date.available | 2025-05-10T17:25:30Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Topal, Ahmet] Istanbul Tech Univ, Dept Math, TR-34469 Sariyer, Istanbul, Turkiye; [Aydin, Mustafa] Van Yuzuncu Yil Univ, Muradiye Vocat Sch, Dept Med Serv & Tech, Van, Turkiye | en_US |
dc.description | Aydin, Mustafa/0000-0003-0132-9636 | en_US |
dc.description.abstract | Integrating fractional calculus into image processing techniques offers a useful and robust approach. In this study, we proposed contrast enhancement filters using Prabhakar fractional integral operator based on Grunwald-Letnikov and forward Euler. We evaluated the performance of the proposed enhancement methods on both high and low contrast images and compared them with fractional and non-fractional contrast enhancement methods. To demonstrate the superiority of our methods, we employed five different image quality metrics: PSNR, MSE, SSIM, FSIM, and entropy. For low contrast images, our methods not only achieved acceptable results for each metric-PSNR values above 25, SSIM values above 0.9, MSE values below 200, FSIM values above 0.97, and entropy values above 7-but also demonstrated better performance compared to other methods. In high contrast images, despite an overall decline in metric scores, the Grunwald-Letnikov based method remains the leading approach among both fractional and non-fractional methods. Additionally, empirical results provide evidence that the proposed methods are more effective in enhancing low contrast images compared to high contrast images. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s11760-024-03542-1 | |
dc.identifier.endpage | 9256 | en_US |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issn | 1863-1711 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85205296590 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 9241 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11760-024-03542-1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/11393 | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:001322434900001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Prabhakar Fractional Integral Operator | en_US |
dc.subject | Contrast Enhancement | en_US |
dc.subject | Image Processing | en_US |
dc.title | A Couple of Novel Image Enhancement Methods Depending on the Prabhakar Fractional Approaches | en_US |
dc.type | Article | en_US |