YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mapping Percentage Tree Cover From Envisat Meris Data Using Linear and Nonlinear Techniques

dc.authorid Atkinson, Peter/0000-0002-5489-6880
dc.authorid Satir, Onur/0000-0002-0666-7784
dc.authorscopusid 57200997365
dc.authorscopusid 35200042700
dc.authorscopusid 7201906181
dc.authorwosid Satir, Onur/Q-7885-2018
dc.authorwosid Berberoglu, Suha/O-4805-2014
dc.authorwosid Atkinson, Peter/L-9508-2013
dc.authorwosid Atkinson, Peter/Joz-0803-2023
dc.contributor.author Berberoglu, S.
dc.contributor.author Satir, O.
dc.contributor.author Atkinson, P. M.
dc.date.accessioned 2025-05-10T17:18:18Z
dc.date.available 2025-05-10T17:18:18Z
dc.date.issued 2009
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Berberoglu, S.] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey; [Satir, O.] Univ Yuzuncu, Dept Landscape Architecture, TR-65080 Yil Van, Turkey; [Atkinson, P. M.] Univ Southampton, Sch Geog, Southampton SO17 1BJ, Hants, England en_US
dc.description Atkinson, Peter/0000-0002-5489-6880; Satir, Onur/0000-0002-0666-7784 en_US
dc.description.abstract The aim of this study was to predict percentage tree cover from Envisat Medium Resolution Imaging Spectrometer (MERIS) imagery with a spatial resolution of 300 m by comparing four common models: a multiple linear regression ( MLR) model, a linear mixture model (LMM), an artificial neural network ( ANN) model and a regression tree (RT) model. The training data set was derived from a fine spatial resolution land cover classification of IKONOS imagery. Specifically, this classification was aggregated to predict percentage tree cover at the MERIS spatial resolution. The predictor variables included the MERIS wavebands plus biophysical variables (the normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of photosynthetically active radiation (fPAR), fraction of green vegetation covering a unit area of horizontal soil (fCover) and MERIS terrestrial chlorophyll index (MTCI)) estimated from the MERIS data. An RT algorithm was the most accurate model to predict percentage tree cover based on the Envisat MERIS bands and vegetation biophysical variables. This study showed that Envisat MERIS data can be used to predict percentage tree cover with considerable spatial detail. Inclusion of the biophysical variables led to greater accuracy in predicting percentage tree cover. This finer-scale depiction should be useful for environmental monitoring purposes at the regional scale. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/01431160802660554
dc.identifier.endpage 4766 en_US
dc.identifier.issn 0143-1161
dc.identifier.issn 1366-5901
dc.identifier.issue 18 en_US
dc.identifier.scopus 2-s2.0-70449570858
dc.identifier.scopusquality Q1
dc.identifier.startpage 4747 en_US
dc.identifier.uri https://doi.org/10.1080/01431160802660554
dc.identifier.uri https://hdl.handle.net/20.500.14720/9625
dc.identifier.volume 30 en_US
dc.identifier.wos WOS:000270299300007
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Mapping Percentage Tree Cover From Envisat Meris Data Using Linear and Nonlinear Techniques en_US
dc.type Article en_US

Files