YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Identification of Onopordum Pollen Using the Extreme Learning Machine, a Type of Artificial Neural Network

dc.authorid Fidan, Mehmet/0000-0002-0255-9727
dc.authorid Pinar, Suleyman Mesut/0000-0002-1774-7704
dc.authorscopusid 58062717700
dc.authorscopusid 57204819196
dc.authorscopusid 35810125200
dc.authorscopusid 55770864800
dc.authorscopusid 7004335768
dc.authorwosid Kaya, Yılmaz/C-3822-2017
dc.authorwosid Fi̇dan, Mehmet/Jwa-6964-2024
dc.authorwosid Pinar, Suleyman Mesut/Aaq-8898-2020
dc.contributor.author Kaya, Yilmaz
dc.contributor.author Pinar, S. Mesut
dc.contributor.author Erez, M. Emre
dc.contributor.author Fidan, Mehmet
dc.contributor.author Riding, James B.
dc.date.accessioned 2025-05-10T17:45:36Z
dc.date.available 2025-05-10T17:45:36Z
dc.date.issued 2014
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kaya, Yilmaz] Siirt Univ, Dept Comp Sci & Engn, Fac Engn & Architecture, TR-56100 Siirt, Turkey; [Pinar, S. Mesut] Yuzuncu Yil Univ, Fac Sci, Dept Biol, TR-65080 Van, Turkey; [Erez, M. Emre; Fidan, Mehmet] Siirt Univ, Fac Sci & Art, Dept Biol, TR-56100 Siirt, Turkey; [Riding, James B.] British Geol Survey, Ctr Environm Sci, Keyworth NG12 5GG, Notts, England en_US
dc.description Fidan, Mehmet/0000-0002-0255-9727; Pinar, Suleyman Mesut/0000-0002-1774-7704 en_US
dc.description.abstract Pollen grains are complex three-dimensional structures, and are identified using specific distinctive morphological characteristics. An efficient automatic system for the accurate and rapid identification of pollen grains would significantly enhance the consistency, objectivity, speed and perhaps accuracy of pollen analysis. This study describes the development and testing of an expert system for the identification of pollen grains based on their respective morphologies. The extreme learning machine (ELM) is a type of artificial neural network, and has been used for automatic pollen identification. To test the equipment and the method, pollen grains from 10 species of Onopordum (a thistle genus) from Turkey were used. In total, 30 different images were acquired for each of the 10 species studied. The images were then used to measure 11 morphological parameters; these were the colpus length, the colpus width, the equatorial axis (E), the polar axis (P), the P/E ratio, the columellae length, the echinae length, and the thicknesses of the exine, intine, nexine and tectum. Pollen recognition was performed using the ELM for the 50-50%, 70-30% and 80-20% training-test partitions of the overall dataset. The classification accuracies of these three training-test partitions of were 84.67%, 91.11% and 95.00%, respectively. Therefore, the ELM exhibited a very high success rate for identifying the pollen types considered here. The use of computer-based systems for pollen recognition has great potential in all areas of palynology for the accurate and rapid accumulation of data. en_US
dc.description.sponsorship NERC [bgs05002] Funding Source: UKRI en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/09500340.2013.868173
dc.identifier.endpage 137 en_US
dc.identifier.issn 0191-6122
dc.identifier.issn 1558-9188
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-84899587246
dc.identifier.scopusquality Q2
dc.identifier.startpage 129 en_US
dc.identifier.uri https://doi.org/10.1080/09500340.2013.868173
dc.identifier.uri https://hdl.handle.net/20.500.14720/16404
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:000334827700009
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Onopordum en_US
dc.subject Artificial Neural Network en_US
dc.subject Automatic Identification en_US
dc.subject Extreme Learning Machine en_US
dc.subject Pollen en_US
dc.subject Expert System en_US
dc.subject Turkey en_US
dc.title Identification of Onopordum Pollen Using the Extreme Learning Machine, a Type of Artificial Neural Network en_US
dc.type Article en_US

Files