Stability of Time-Delay Systems Via the Razumikhin Method
dc.authorid | Graef, John/0000-0002-8149-4633 | |
dc.authorscopusid | 7006790336 | |
dc.authorscopusid | 6603328862 | |
dc.authorscopusid | 56638410400 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.authorwosid | Tunç, Osman/Gre-9544-2022 | |
dc.contributor.author | Graef, John R. | |
dc.contributor.author | Tunc, Cemil | |
dc.contributor.author | Tunc, Osman | |
dc.date.accessioned | 2025-05-10T17:36:47Z | |
dc.date.available | 2025-05-10T17:36:47Z | |
dc.date.issued | 2022 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Graef, John R.] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Van, Turkey; [Tunc, Osman] Van Yuzuncu Yil Univ, Baskale Vocat Sch, Dept Comp Programing, Van, Turkey | en_US |
dc.description | Graef, John/0000-0002-8149-4633 | en_US |
dc.description.abstract | The authors consider the time delay systems both with and without a perturbation term <(x) over dot>(t) = -Dx(t) + C integral(t)(t-h) x(s)ds + P(t, x(t)) and <(x) over dot>(t) = Dx(t) + C integral(t)(t-h) x(s)ds, where x(t) is an element of R-n is the state vector, D and C is an element of R-nxn are constant matrices, P is an element of C(R+ x R-n, R-n) and h > 0 is a constant time delay. They use the Razumikhin method to obtain some new conditions for the uniform asymptotic stability, instability, and exponential stability of the zero solution, the square integrability of the norms of all solutions of the unperturbed equation, and the boundedness of solutions of the perturbed equation. In the process, they are able to give a much simpler version of a recent result by Tian et al. (Appl Math Lett 101:106058, 2020). | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.1007/s40590-022-00425-8 | |
dc.identifier.issn | 1405-213X | |
dc.identifier.issn | 2296-4495 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85126200932 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s40590-022-00425-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/14185 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wos | WOS:000767776500001 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Springer int Publ Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | System Of Integro-Differential Equations | en_US |
dc.subject | Delay | en_US |
dc.subject | Asymptotic Stability | en_US |
dc.subject | Exponential Stability | en_US |
dc.subject | Instability | en_US |
dc.subject | Boundedness | en_US |
dc.subject | Lyapunov Function | en_US |
dc.subject | Razumikhin Method | en_US |
dc.title | Stability of Time-Delay Systems Via the Razumikhin Method | en_US |
dc.type | Article | en_US |