On Metric Dimension of Circumcoronene Series of Benzenoid Networks
dc.authorscopusid | 57213855187 | |
dc.authorscopusid | 57194737689 | |
dc.authorscopusid | 58796411900 | |
dc.authorscopusid | 58018991300 | |
dc.authorscopusid | 57190155028 | |
dc.authorscopusid | 6507002237 | |
dc.authorscopusid | 6507002237 | |
dc.contributor.author | Chaudhry, Faryal | |
dc.contributor.author | Abbas, Azhar Ali | |
dc.contributor.author | Maktoof, Mohammed Abdul Jaleel | |
dc.contributor.author | Farooq, Umar | |
dc.contributor.author | Farahani, Mohammad Reza | |
dc.contributor.author | Alaeiyan, Mehdi | |
dc.contributor.author | Cancan, Murat | |
dc.date.accessioned | 2025-06-01T20:03:25Z | |
dc.date.available | 2025-06-01T20:03:25Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Chaudhry, Faryal; Farooq, Umar] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan; [Abbas, Azhar Ali] Univ Kerbala, Dept Informat Technol, Coll Comp Sci & Informat Technol, Karbala 56001, Iraq; [Maktoof, Mohammed Abdul Jaleel] Al Turath Univ, Dept Comp Technol Engn, Baghdad 10013, Iraq; [Farahani, Mohammad Reza; Alaeiyan, Mehdi] Iran Univ Sci & Technol IUST, Dept Math & Comp Sci, Tehran 16844, Iran; [Cancan, Murat] Yuzuncu Yil Univ, Fac Educ, Dept Math, Van, Turkiye | en_US |
dc.description.abstract | In molecular topology and chemistry, resolving sets and metric bases are essential concepts. They have numerous applications in computer science, artificial intelligence, chemistry, pharmacy, traffic networking, mathematical modeling, and programming. Adivision S of the vertex set chi of a linked graph G is said to resolve G if eachpoint of G can be represented from its neighborhood in S. A metric dimension of a graph is the number of the smallest resolving set, also known as the metric basis of the graph.In the current research we will determine the metric dimension and metric basis of the circumcoronene series CS of benzenoid Hk for k >= 1. We prove that a set with three vertices is required to resolve this graph, and therefore, its metric dimension is 3. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.47974/JDMSC-2249 | |
dc.identifier.endpage | 524 | en_US |
dc.identifier.issn | 0972-0529 | |
dc.identifier.issn | 2169-0065 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-105003396839 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 511 | en_US |
dc.identifier.uri | https://doi.org/10.47974/JDMSC-2249 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/24965 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wos | WOS:001487893100026 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Taru Publications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Resolving Set | en_US |
dc.subject | Metric Basis | en_US |
dc.subject | Metric Dimension | en_US |
dc.subject | Circumcoronene Series | en_US |
dc.subject | Benzenoid | en_US |
dc.title | On Metric Dimension of Circumcoronene Series of Benzenoid Networks | en_US |
dc.type | Article | en_US |