YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Metric Dimension of Circumcoronene Series of Benzenoid Networks

dc.authorscopusid 57213855187
dc.authorscopusid 57194737689
dc.authorscopusid 58796411900
dc.authorscopusid 58018991300
dc.authorscopusid 57190155028
dc.authorscopusid 6507002237
dc.authorscopusid 6507002237
dc.contributor.author Chaudhry, Faryal
dc.contributor.author Abbas, Azhar Ali
dc.contributor.author Maktoof, Mohammed Abdul Jaleel
dc.contributor.author Farooq, Umar
dc.contributor.author Farahani, Mohammad Reza
dc.contributor.author Alaeiyan, Mehdi
dc.contributor.author Cancan, Murat
dc.date.accessioned 2025-06-01T20:03:25Z
dc.date.available 2025-06-01T20:03:25Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Chaudhry, Faryal; Farooq, Umar] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan; [Abbas, Azhar Ali] Univ Kerbala, Dept Informat Technol, Coll Comp Sci & Informat Technol, Karbala 56001, Iraq; [Maktoof, Mohammed Abdul Jaleel] Al Turath Univ, Dept Comp Technol Engn, Baghdad 10013, Iraq; [Farahani, Mohammad Reza; Alaeiyan, Mehdi] Iran Univ Sci & Technol IUST, Dept Math & Comp Sci, Tehran 16844, Iran; [Cancan, Murat] Yuzuncu Yil Univ, Fac Educ, Dept Math, Van, Turkiye en_US
dc.description.abstract In molecular topology and chemistry, resolving sets and metric bases are essential concepts. They have numerous applications in computer science, artificial intelligence, chemistry, pharmacy, traffic networking, mathematical modeling, and programming. Adivision S of the vertex set chi of a linked graph G is said to resolve G if eachpoint of G can be represented from its neighborhood in S. A metric dimension of a graph is the number of the smallest resolving set, also known as the metric basis of the graph.In the current research we will determine the metric dimension and metric basis of the circumcoronene series CS of benzenoid Hk for k >= 1. We prove that a set with three vertices is required to resolve this graph, and therefore, its metric dimension is 3. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.47974/JDMSC-2249
dc.identifier.endpage 524 en_US
dc.identifier.issn 0972-0529
dc.identifier.issn 2169-0065
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-105003396839
dc.identifier.scopusquality Q2
dc.identifier.startpage 511 en_US
dc.identifier.uri https://doi.org/10.47974/JDMSC-2249
dc.identifier.uri https://hdl.handle.net/20.500.14720/24965
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:001487893100026
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taru Publications en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Resolving Set en_US
dc.subject Metric Basis en_US
dc.subject Metric Dimension en_US
dc.subject Circumcoronene Series en_US
dc.subject Benzenoid en_US
dc.title On Metric Dimension of Circumcoronene Series of Benzenoid Networks en_US
dc.type Article en_US

Files