YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On New General Versions of Hermite-Hadamard Type Integral Inequalities Via Fractional Integral Operators With Mittag-Leffler Kernel

dc.authorscopusid 57224903160
dc.authorscopusid 36871735200
dc.authorscopusid 57194271062
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ardıç, Mehmet/Juf-6397-2023
dc.authorwosid Kavurmaci-Onalan, Havva/Hdm-3332-2022
dc.authorwosid Akdemir, Ahmet Ocak/Q-2400-2019
dc.contributor.author Kavurmaci onalan, Havva
dc.contributor.author Akdemir, Ahmet Ocak
dc.contributor.author Avci Ardic, Merve
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2025-05-10T17:14:53Z
dc.date.available 2025-05-10T17:14:53Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kavurmaci onalan, Havva] Yuzuncu Yil Univ, Dept Math Educ, Fac Educ, Van, Turkey; [Akdemir, Ahmet Ocak] Ibrahim Cecen Univ Agri, Fac Sci & Arts, Dept Math, Agri, Turkey; [Avci Ardic, Merve] Adiyaman Univ, Fac Sci & Arts, Dept Math, Adiyaman, Turkey; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele R76900, Romania en_US
dc.description.abstract The main motivation of this study is to bring together the field of inequalities with fractional integral operators, which are the focus of attention among fractional integral operators with their features and frequency of use. For this purpose, after introducing some basic concepts, a new variant of Hermite-Hadamard (HH-) inequality is obtained for s-convex functions in the second sense. Then, an integral equation, which is important for the main findings, is proved. With the help of this integral equation that includes fractional integral operators with Mittag-Leffler kernel, many HH-type integral inequalities are derived for the functions whose absolute values of the second derivatives are s-convex and s-concave. Some classical inequalities and hypothesis conditions, such as Holder's inequality and Young's inequality, are taken into account in the proof of the findings. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1186/s13660-021-02721-9
dc.identifier.issn 1029-242X
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85119450579
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1186/s13660-021-02721-9
dc.identifier.uri https://hdl.handle.net/20.500.14720/8476
dc.identifier.volume 2021 en_US
dc.identifier.wos WOS:000720411300001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject S-Convex Functions en_US
dc.subject Hermite-Hadamard Inequality en_US
dc.subject Holder Inequality en_US
dc.subject Atangana-Baleanu Integral Operators en_US
dc.subject Normalization Function en_US
dc.subject Euler Gamma Function en_US
dc.subject Incomplete Beta Function en_US
dc.title On New General Versions of Hermite-Hadamard Type Integral Inequalities Via Fractional Integral Operators With Mittag-Leffler Kernel en_US
dc.type Article en_US

Files