YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Study on Comparisons of Bayesian and Classical Parameter Estimation Methods for the Two-Parameter Weibull Distribution

dc.authorwosid Aydoğdu, Halil/Aah-3036-2020
dc.contributor.author Yilmaz, Asuman
dc.contributor.author Kara, Mahmut
dc.contributor.author Aydogdu, Halil
dc.date.accessioned 2025-05-10T17:35:03Z
dc.date.available 2025-05-10T17:35:03Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yilmaz, Asuman; Kara, Mahmut] Van Yuzuncu Yil Univ, Fac Econ & Adm Sci, Dept Econometr, TR-65080 Van, Turkey; [Aydogdu, Halil] Ankara Univ, Fac Sci, Dept Stat, TR-06100 Ankara, Turkey en_US
dc.description.abstract The main objective of this paper is to determine the best estimators of the shape and scale parameters of the two parameter Weibull distribution. Therefore, both classical and Bayesian approximation methods are considered. For parameter estimation of classical approximation methods maximum likelihood estimators (MLEs), modified maximum likelihood estimators-I (MMLEs-I), modified maximum likelihood estimators-II (MMLEs-II), least square estimators (LSEs), weighted least square estimators (WLSEs), percentile estimators (PEs), moment estimators (MEs), L-moment estimators (LMEs) and TL-moment estimators (TLMEs) are used. Since the Bayesian estimators don't have the explicit form. There are Bayes estimators are obtained by using Lindley's and Tierney Kadane's approximation methods in this study. In Bayesian approximation, the choice of loss function and prior distribution is very important. Hence, Bayes estimators are given based on both the non-informative and informative prior distribution. Moreover, these estimators have been calculated under different symmetric and asymmetric loss functions. The performance of classical and Bayesian estimators are compared with respect to their biases and MSEs through a simulation study. Finally, a real data set taken from Turkish State Meteorological Service is analysed for better understanding of methods presented in this paper. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.31801/cfsuasmas.606890
dc.identifier.endpage 602 en_US
dc.identifier.issn 1303-5991
dc.identifier.issue 1 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 576 en_US
dc.identifier.trdizinid 1204585
dc.identifier.uri https://doi.org/10.31801/cfsuasmas.606890
dc.identifier.uri https://hdl.handle.net/20.500.14720/14004
dc.identifier.volume 69 en_US
dc.identifier.wos WOS:000545432900013
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ankara Univ, Fac Sci en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bayes Approximation en_US
dc.subject Parameter Estimation en_US
dc.subject New Estimator en_US
dc.subject L-Moment Estimator en_US
dc.subject Simulation Study en_US
dc.title A Study on Comparisons of Bayesian and Classical Parameter Estimation Methods for the Two-Parameter Weibull Distribution en_US
dc.type Article en_US

Files