YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Current-Driven Deep Learning for Enhanced Motor Bearing Prognostics

dc.authorscopusid 57216616671
dc.authorscopusid 25522873900
dc.authorscopusid 6701387497
dc.contributor.author Afshar, Mojtaba
dc.contributor.author Rajabioun, Ramin
dc.contributor.author Akin, Bilal
dc.date.accessioned 2025-05-10T17:29:24Z
dc.date.available 2025-05-10T17:29:24Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Afshar, Mojtaba; Akin, Bilal] Univ Texas Dallas, Richardson, TX 75080 USA; [Rajabioun, Ramin] Yuzuncu Yil Univ, TR-65090 Van, Turkiye en_US
dc.description.abstract An innovative deep-learning framework embedding residual and channel attention blocks is introduced, tailored explicitly to assess the remaining lifespan of cooling motor bearings affected by distributed faults, utilizing only 3-phase current signals. Cooling fan motors are integral to the stability of power electronics systems and data centers. Using an accelerometer to monitor bearings is not very practical for small motors and is costly. Hence different from other studies employing vibration signals for high-power machines, this research prioritizes motor current signals. Aging-related defects are clearly visible on small motor currents, unlike the large ones since the rated torque is low and the modulated torque disturbance caused by bearing defects is more noticeable on the phase currents. The experimental approach involves subjecting motors to diverse testing conditions, spanning from normal operation to failure, to ascertain their RUL before potential critical issues emerge. Seven configurations, encompassing permanent magnet synchronous motors and brushless direct current motors with varying power ratings, undergo rigorous experimental testing from normal to failure states. The resultant diverse dataset forms the basis for developing a robust distributed bearing fault detection algorithm. The proposed deep learning architecture demonstrates notable performance with a train accuracy of 97.10% and a test accuracy of 95.94%. This suggests a high level of effectiveness and generalization capability in accurately predicting the RUL in cooling fan motors using current signals. en_US
dc.description.sponsorship Texas Instruments en_US
dc.description.sponsorship This work was supported by Texas Instruments. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1109/TIA.2024.3492156
dc.identifier.endpage 2873 en_US
dc.identifier.issn 0093-9994
dc.identifier.issn 1939-9367
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-105002381881
dc.identifier.scopusquality Q1
dc.identifier.startpage 2864 en_US
dc.identifier.uri https://doi.org/10.1109/TIA.2024.3492156
dc.identifier.uri https://hdl.handle.net/20.500.14720/12323
dc.identifier.volume 61 en_US
dc.identifier.wos WOS:001459779300031
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Motors en_US
dc.subject Torque en_US
dc.subject Friction en_US
dc.subject Estimation en_US
dc.subject Viscosity en_US
dc.subject Lubrication en_US
dc.subject Fans en_US
dc.subject Cooling en_US
dc.subject Vibrations en_US
dc.subject Degradation en_US
dc.subject Deep Learning (Dl) en_US
dc.subject Remaining Useful Lifespan (Rul) en_US
dc.subject Distributed Bearing Fault en_US
dc.subject Residual Blocks en_US
dc.subject Channel Attention en_US
dc.title Current-Driven Deep Learning for Enhanced Motor Bearing Prognostics en_US
dc.type Article en_US

Files