YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Session Context Data Integration To Address the Cold Start Problem in E-Commerce Recommender Systems

dc.authorid Abdullahi, Hassana/0000-0003-2347-6848
dc.authorid Esmeli, Ramazan/0000-0002-2634-6224
dc.authorid Can, Ali Selcuk/0000-0001-6120-5534
dc.authorscopusid 57205761373
dc.authorscopusid 57211169257
dc.authorscopusid 19638408400
dc.authorscopusid 57218768337
dc.authorwosid Esmeli, Ramazan/Aae-4712-2020
dc.authorwosid Can, Ali Selcuk/L-2575-2019
dc.contributor.author Esmeli, Ramazan
dc.contributor.author Abdullahi, Hassana
dc.contributor.author Bader-El-Den, Mohamed
dc.contributor.author Can, Ali Selcuk
dc.date.accessioned 2025-05-10T17:25:33Z
dc.date.available 2025-05-10T17:25:33Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Esmeli, Ramazan] Van Yuzuncu Yil Univ, Engn Fac, Comp Engn Dept, Van, Turkiye; [Abdullahi, Hassana] Cardiff Metropolitan Univ, Cardiff Sch Management, Cardiff, Wales; [Bader-El-Den, Mohamed] Univ Portsmouth, Sch Comp, Portsmouth, England; [Can, Ali Selcuk] Univ Portsmouth, Sch Strategy Mkt & Innovat, Portsmouth PO13HL, England en_US
dc.description Abdullahi, Hassana/0000-0003-2347-6848; Esmeli, Ramazan/0000-0002-2634-6224; Can, Ali Selcuk/0000-0001-6120-5534 en_US
dc.description.abstract Recommender systems play an important role in identifying and filtering relevant products based on the behaviours of users. Nevertheless, recommender systems suffer from the 'cold-start' problem, which occurs when no prior information about a new session or a user is available. Many approaches to solving the cold-start problem have been presented in the literature. However, there is still room for improving the performance of recommender systems in the cold-start stage. In this article, we present a novel method to alleviate the cold-start problem in session-based recommender systems. The purpose of this work is to develop a session similarity-based cold-start session alleviation approach for recommendation systems. The developed method uses previous sessions' contextual and temporal features to find sessions similar to the newly started one. Our results on three different datasets show that, based on the provided Mean Average Precision and Normalised Discounted Cumulative Gain scores, the Session Similarity-based Framework consistently outperforms baseline models in terms of recommendation relevance and ranking quality across three used datasets. Our approach can be used to address the challenges associated with cold start sessions where no previously interacted items are present. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.dss.2024.114339
dc.identifier.issn 0167-9236
dc.identifier.issn 1873-5797
dc.identifier.scopus 2-s2.0-85204501628
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.dss.2024.114339
dc.identifier.uri https://hdl.handle.net/20.500.14720/11404
dc.identifier.volume 187 en_US
dc.identifier.wos WOS:001322176300001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cold-Start Problem en_US
dc.subject Recommender Systems en_US
dc.subject Session Similarity en_US
dc.title Session Context Data Integration To Address the Cold Start Problem in E-Commerce Recommender Systems en_US
dc.type Article en_US

Files