YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Estimation of Parameters for the Gumbel Type-I Distribution Under Type-Ii Censoring Scheme

dc.authorid Yilmaz, Asuman/0000-0002-8653-6900
dc.authorscopusid 57224920023
dc.authorscopusid 36910855300
dc.contributor.author Yilmaz, Asuman
dc.contributor.author Kara, Mahmut
dc.date.accessioned 2025-05-10T17:20:35Z
dc.date.available 2025-05-10T17:20:35Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yilmaz, Asuman; Kara, Mahmut] Van Yuzuncu Yil Univ, Fac Econ & Adm Sci, Dept Econometr, TR-65080 Van, Turkiye en_US
dc.description Yilmaz, Asuman/0000-0002-8653-6900 en_US
dc.description.abstract This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different prior distributions are used. Also, the Bayesian estimators concerning the parameters of interest under various loss functions are investigated. The Gibbs sampling algorithm is used to construct the Bayesian credible intervals. Then, the efficiencies of the maximum likelihood estimators are compared with Bayesian estimators via an extensive Monte Carlo simulation study. It has been shown that the Bayesian estimators are considerably more efficient than the maximum likelihood estimators. Finally, a real-life example is also presented for application purposes. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.21123/bsj.2022.6898
dc.identifier.endpage 842 en_US
dc.identifier.issn 2078-8665
dc.identifier.issn 2411-7986
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85179829692
dc.identifier.scopusquality Q3
dc.identifier.startpage 834 en_US
dc.identifier.uri https://doi.org/10.21123/bsj.2022.6898
dc.identifier.uri https://hdl.handle.net/20.500.14720/10138
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:001016905800019
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Coll Science Women, Univ Baghdad en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bayesian Methods en_US
dc.subject Gumbel Type-I Distribution en_US
dc.subject Simulation en_US
dc.subject Type-Ii Censoring en_US
dc.title Estimation of Parameters for the Gumbel Type-I Distribution Under Type-Ii Censoring Scheme en_US
dc.type Article en_US

Files