YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction

dc.authorid Genc, Naci/0000-0001-5673-1708
dc.authorscopusid 6506084880
dc.authorscopusid 35792736300
dc.authorscopusid 55875773400
dc.authorscopusid 23481908900
dc.authorwosid Genc, Naci/Aae-3477-2019
dc.authorwosid Bayindir, Ramazan/A-4595-2018
dc.contributor.author Bayindir, Ramazan
dc.contributor.author Yesilbudak, Mehmet
dc.contributor.author Colak, Medine
dc.contributor.author Genc, Naci
dc.date.accessioned 2025-05-10T17:28:54Z
dc.date.available 2025-05-10T17:28:54Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Bayindir, Ramazan; Colak, Medine] Gazi Univ, Fac Technol, Dept Elect & Elect Engn, TR-06500 Ankara, Turkey; [Yesilbudak, Mehmet] Nevsehir Haci Bektas Veli Univ, Dept Elect & Elect Engn, Fac Engn & Architecture, TR-50300 Nevsehir, Turkey; [Genc, Naci] Yuzuncu Yil Univ, Dept Elect & Elect Engn, Fac Engn & Architecture, TR-65080 Van, Turkey en_US
dc.description Genc, Naci/0000-0001-5673-1708 en_US
dc.description.abstract Solar energy is one of the most affordable and clean renewable energy source in the world. Hence, the solar energy prediction is an inevitable requirement in order to get the maximum solar energy during the day time and to increase the efficiency of solar energy systems. For this purpose, this paper predicts the daily total energy generation of an installed photovoltaic system using the Naive Bayes classifier. In the prediction process, one-year historical dataset including daily average temperature, daily total sunshine duration, daily total global solar radiation and daily total photovoltaic energy generation parameters are used as the categorical-valued attributes. By means of the Naive Bayes application, the sensitivity and the accuracy measures are improved for the photovoltaic energy prediction and the effects of other solar attributes on the photovoltaic energy generation are evaluated. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/ICMLA.2017.0-108
dc.identifier.endpage 527 en_US
dc.identifier.isbn 9781538614174
dc.identifier.scopus 2-s2.0-85048464276
dc.identifier.scopusquality N/A
dc.identifier.startpage 523 en_US
dc.identifier.uri https://doi.org/10.1109/ICMLA.2017.0-108
dc.identifier.uri https://hdl.handle.net/20.500.14720/12185
dc.identifier.wos WOS:000425853000079
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 16th IEEE International Conference on Machine Learning and Applications (ICMLA) -- DEC 18-21, 2017 -- Cancun, MEXICO en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Pv System en_US
dc.subject Solar Energy en_US
dc.subject Naive Bayes en_US
dc.subject Prediction en_US
dc.title A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction en_US
dc.type Conference Object en_US

Files