YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Solution of Singularly Perturbed Fredholm Integro-Differential Equations by Homogeneous Second Order Difference Method

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

This work presents a computational approximate to solve singularly perturbed Fredholm integro-differential equation with the reduced second type Fredholm equation. This problem is discretized by a finite difference approximate, which generates second-order uniformly convergent numerical approximations to the solution. Parameter-uniform approximations are generated using Shishkin type meshes. The performance of the numerical scheme is tested which supports the effectiveness of the technique. (c) 2022 Elsevier B.V. All rights reserved.

Description

Durmaz, Muhammet Enes/0000-0002-6216-1032

Keywords

Fredholm Integro-Differential Equation, Singular Perturbation, Finite Difference Methods, Shishkin Mesh, Uniform Convergence

Turkish CoHE Thesis Center URL

WoS Q

Q1

Scopus Q

Q1

Source

Volume

412

Issue

Start Page

End Page