YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Investigation on the Aging Responses and Corrosion Behaviour of A356/Sic Composites by Neural Network: the Effect of Cold Working Ratio

dc.authorid Tuntas, Remzi/0000-0001-7973-2412
dc.authorid Dikici, Burak/0000-0002-7249-923X
dc.authorscopusid 55874010700
dc.authorscopusid 23501298200
dc.authorwosid Dikici, Burak/A-2054-2009
dc.contributor.author Tuntas, Remzi
dc.contributor.author Dikici, Burak
dc.date.accessioned 2025-05-10T17:41:02Z
dc.date.available 2025-05-10T17:41:02Z
dc.date.issued 2016
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Tuntas, Remzi] Yuzuncu Yil Univ, Ercis Tech Vocat Sch Higher Educ, TR-65400 Ercis Myo Van, Turkey; [Dikici, Burak] Yuzuncu Yil Univ, Dept Mech Engn, TR-65400 Ercis Myo Van, Turkey en_US
dc.description Tuntas, Remzi/0000-0001-7973-2412; Dikici, Burak/0000-0002-7249-923X en_US
dc.description.abstract In the present study, an artificial neural network model has been used for predicting the corrosion behaviour, aging and hardness responses of aluminium-based metal matrix composites reinforced with silicon carbide particle. Hyperbolic tangent sigmoid and linear activation functions are employed as the most appropriate activation function for hidden and output layers, respectively. The developed artificial neural network model is used to predict the corrosion current density, peak aging time and peak hardness of the composites. Feed forward back propagation neural network has been trained by Levenberg Marquardt algorithm. The regression correlation coefficients (R-2) between the predicted and the experimental values of the corrosion current densities are found as 0.99986, 0.99629 and 0.99671 for the training, testing and validation datasets, respectively. Also, some case studies have been predicted by artificial neural network model. Test results indicate that the proposed network can be used efficiently for the prediction of the polarization response, peak aging time and peak hardness of the composites for different SiC volume fractions and deformation ratio without using any experimental data. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1177/0021998315602950
dc.identifier.endpage 2335 en_US
dc.identifier.issn 0021-9983
dc.identifier.issn 1530-793X
dc.identifier.issue 17 en_US
dc.identifier.scopus 2-s2.0-84973915307
dc.identifier.scopusquality Q2
dc.identifier.startpage 2323 en_US
dc.identifier.uri https://doi.org/10.1177/0021998315602950
dc.identifier.uri https://hdl.handle.net/20.500.14720/15393
dc.identifier.volume 50 en_US
dc.identifier.wos WOS:000378685800003
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Metal Matrix Composite en_US
dc.subject Hardness en_US
dc.subject Corrosion en_US
dc.subject Cold Deformation en_US
dc.title An Investigation on the Aging Responses and Corrosion Behaviour of A356/Sic Composites by Neural Network: the Effect of Cold Working Ratio en_US
dc.type Article en_US

Files