Microwave-Assisted Fabrication of Agruni Trimetallic Nps With Their Antibacterial Vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants
dc.authorscopusid | 57216862467 | |
dc.authorscopusid | 57387844200 | |
dc.authorscopusid | 57195693468 | |
dc.authorscopusid | 57216851369 | |
dc.authorscopusid | 58520562700 | |
dc.authorscopusid | 58566669900 | |
dc.authorscopusid | 58566669900 | |
dc.authorwosid | Karahan, Tugba/Mbg-4519-2025 | |
dc.authorwosid | Tiri, Rima/Afn-7111-2022 | |
dc.authorwosid | Kocak, Yılmaz/Abg-8344-2021 | |
dc.authorwosid | Şen, Fatih/O-9407-2016 | |
dc.contributor.author | Kocak, Yilmaz | |
dc.contributor.author | Tiri, Rima Nour Elhouda | |
dc.contributor.author | Aygun, Aysenur | |
dc.contributor.author | Meydan, Ismet | |
dc.contributor.author | Bennini, Nihed | |
dc.contributor.author | Karahan, Tugba | |
dc.contributor.author | Sen, Fatih | |
dc.date.accessioned | 2025-05-10T17:18:38Z | |
dc.date.available | 2025-05-10T17:18:38Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Kocak, Yilmaz] Van Yuzuncu Yil Univ, Fac Hlth Sci, Phys Therapy & Rehabil, TR-65080 Van, Turkiye; [Kocak, Yilmaz] Van Yuzuncu Yil Univ, Fac Vet, Dept Pharmacol Toxicol, TR-65080 Van, Turkiye; [Tiri, Rima Nour Elhouda; Aygun, Aysenur; Bennini, Nihed; Sen, Fatih] Dumlupinar Univ, Fac Arts & Sci, Dept Biochem, Sen Res Grp, Evliya Celebi Campus, TR-43100 Kutahya, Turkiye; [Meydan, Ismet; Karahan, Tugba] Van Yuzuncu Yil Univ, Vocat Sch Hlth Serv, TR-65080 Van, Turkiye | en_US |
dc.description.abstract | Antibiotic-resistant bacteria have long been a concern and become a public health problem around the world. Therefore, various methods are being tried to develop new-generation therapeutic agents against antibiotic resistance. One of these methods is biogenic nanoparticle (NP) synthesis. Besides the antibacterial properties of biogenic NPs, it also contributes to the solution of the environmental toxic waste problem. In this study, we present a more environmentally friendly microwave approach to produce AgRuNi trimetallic nanoparticles (AgRuNi TNPs). The structural properties and chemical composition of TNPs were characterized by several techniques such as XRD, TEM, FTIR etc. The average particle size of AgRuNi TNPs was found to be 3.61 +/- 0.63 nm. For the removal of a persistent organic pollutant, such as methyl orange (MO) under solar irradiation, the photocatalytic activity of AgRuNi TNPs to remove MO dye was examined. The photodegradation percentage (%) of AgRuNi TNPs against MO dye after 300 min was calculated as 92%. Additionally, the antibacterial efficacy of the generated nanoparticles against gram (+) and gram (-) was evaluated. Overall, the current method to produce AgRuNi TNPs is based on the principles of green chemistry and pharmaceutical technology and shows promise for the creation of highly effective photocatalytic systems and the development of drug delivery systems to generate antibacterial activity. | en_US |
dc.description.sponsorship | Council of Higher Education (CoHE) [100/2000]; [TYD-2022-10083] | en_US |
dc.description.sponsorship | The authors would like to thank Van Yuzuncu Y & imath;l University Scientific Research Project Unit for their project support numbered TYD-2022-10083. A. Aygun is supported by the Council of Higher Education (CoHE) with 100/2000 PhD Scholarship. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.1007/s12668-023-01237-4 | |
dc.identifier.endpage | 101 | en_US |
dc.identifier.issn | 2191-1630 | |
dc.identifier.issn | 2191-1649 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85177702260 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 93 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s12668-023-01237-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/9734 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:001105149000002 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Agruni Tnps | en_US |
dc.subject | Antibacterial | en_US |
dc.subject | Photocatalytic Activity | en_US |
dc.subject | Microwave Synthesis | en_US |
dc.title | Microwave-Assisted Fabrication of Agruni Trimetallic Nps With Their Antibacterial Vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants | en_US |
dc.type | Article | en_US |