YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Stability Results and Existence Theorems for Nonlinear Delay-Fractional Differential Equations With Φ*p-Operator

dc.authorid Khan, Aziz/0000-0001-6185-9394
dc.authorid Khan, Hasib/0000-0002-7186-8435
dc.authorscopusid 55258301900
dc.authorscopusid 6603328862
dc.authorscopusid 56865012200
dc.authorwosid Khan, Aziz/Aag-4626-2021
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.authorwosid Khan, Hasib/Afj-9925-2022
dc.contributor.author Khan, Hasib
dc.contributor.author Tunc, Cemil
dc.contributor.author Khan, Aziz
dc.date.accessioned 2025-05-10T17:04:31Z
dc.date.available 2025-05-10T17:04:31Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khan, Hasib] Shaheed Benazir Bhutto Univ, Dept Math, POB 18000, Khybar Pakhtunkhwa, Pakistan; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey; [Khan, Aziz] Prince Sultan Univ, Dept Math & Gen Sci, POB66833, Riyadh 11586, Saudi Arabia en_US
dc.description Khan, Aziz/0000-0001-6185-9394; Khan, Hasib/0000-0002-7186-8435 en_US
dc.description.abstract The study of delay-fractional differential equations (fractional DEs) have recently attracted a lot of attention from scientists working on many different subjects dealing with mathematically modeling. In the study of fractional DEs the first question one might raise is whether the problem has a solution or not. Also, whether the problem is stable or not? In order to ensure the answer to these questions, we discuss the existence and uniqueness of solutions (EUS) and Hyers-Ulam stability (HUS) for our proposed problem, a nonlinear fractional DE with p-Laplacian operator and a non zero delay tau > 0 of order n - 1 < nu*, epsilon < n, for n >= 3 in Banach space A. We use the Caputo's definition for the fractional differential operators D-nu*, D-epsilon. The assumed fractional DE with p-Laplacian operator is more general and complex than that studied by Khan et al. Eur Phys J Plus, (2018);133:26. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.11948/20180322
dc.identifier.endpage 597 en_US
dc.identifier.issn 2156-907X
dc.identifier.issn 2158-5644
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85081282937
dc.identifier.scopusquality Q1
dc.identifier.startpage 584 en_US
dc.identifier.uri https://doi.org/10.11948/20180322
dc.identifier.uri https://hdl.handle.net/20.500.14720/6025
dc.identifier.volume 10 en_US
dc.identifier.wos WOS:000509785700012
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Wilmington Scientific Publisher, Llc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Hybrid Fractional Differential Equations en_US
dc.subject Hyers-Ulam Stability en_US
dc.subject Caputo'S Fractional Derivative en_US
dc.subject Existence And Uniqueness en_US
dc.subject Topological Degree Theory en_US
dc.title Stability Results and Existence Theorems for Nonlinear Delay-Fractional Differential Equations With Φ*p-Operator en_US
dc.type Article en_US

Files