YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Understanding Customer Loyalty-Aware Recommender Systems in E-Commerce: an Analytical Perspective

dc.authorid Can, Ali Selcuk/0000-0001-6120-5534
dc.authorid Esmeli, Ramazan/0000-0002-2634-6224
dc.authorscopusid 57205761373
dc.authorscopusid 57218768337
dc.authorscopusid 57194324982
dc.authorscopusid 19638408400
dc.authorwosid Can, Ali Selcuk/L-2575-2019
dc.contributor.author Esmeli, Ramazan
dc.contributor.author Can, Ali Selcuk
dc.contributor.author Awad, Aya
dc.contributor.author Bader-El-Den, Mohamed
dc.date.accessioned 2025-05-10T17:29:34Z
dc.date.available 2025-05-10T17:29:34Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Esmeli, Ramazan] Yuzuncu Yil Univ, Dept Comp Engn, Van, Turkiye; [Can, Ali Selcuk] Univ Portsmouth, Fac Business & Law, Sch Strategy Mkt & Innovat, Portsmouth, Hants, England; [Awad, Aya] Arab Acad Sci & Technol & Maritime Transport, Coll Management & Technol, BIS Dept, Alexandria, Egypt; [Bader-El-Den, Mohamed] Abdullah Al Salem Univ, Coll Comp & Syst, Khaldiya, Kuwait; [Bader-El-Den, Mohamed] Univ Portsmouth, Sch Comp, Portsmouth, Hants, England en_US
dc.description Can, Ali Selcuk/0000-0001-6120-5534; Esmeli, Ramazan/0000-0002-2634-6224 en_US
dc.description.abstract The selection of relevant variables is critical for providing personalized product and service recommendations on e-commerce businesses. However, the integration of e-loyalty-related features into recommender systems remains underexplored. This study aims to investigate the impact of incorporating e-loyalty indicators, such as purchase frequency and platform engagement, on the performance of recommender systems in the context of e-commerce businesses. Using three well-established recommender system models and four real-world datasets, we conducted computational experiments to assess performance improvements when e-loyalty features are incorporated. The results show that integrating e-loyalty-related features significantly enhances the performance of recommendation systems, with sequential deep neural networks outperforming other algorithms. Our study contributes to the literature by highlighting the value of leveraging customer loyalty data to enhance recommendation accuracy. Theoretical implications include underscoring the importance of using longitudinal user engagement data in recommender systems to move beyond static personalization toward adaptive, behavior-aware technologies. From a practical perspective, our findings suggest that incorporating e-loyalty features can improve recommendation accuracy, offering valuable insights for e-commerce businesses seeking to personalize their services. This research offers original contributions by focusing on the role of loyalty-driven features in improving recommender systems, an area that remains largely underexplored. en_US
dc.description.sponsorship Van Yuzuncu Yil University en_US
dc.description.sponsorship Not Applicable en_US
dc.description.woscitationindex Social Science Citation Index
dc.identifier.doi 10.1007/s10660-025-09954-6
dc.identifier.issn 1389-5753
dc.identifier.issn 1572-9362
dc.identifier.scopus 2-s2.0-85218277148
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s10660-025-09954-6
dc.identifier.uri https://hdl.handle.net/20.500.14720/12395
dc.identifier.wos WOS:001426371600001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Recommender System en_US
dc.subject Context Features en_US
dc.subject Consumer E-Loyalty en_US
dc.title Understanding Customer Loyalty-Aware Recommender Systems in E-Commerce: an Analytical Perspective en_US
dc.type Article en_US

Files