An Almost Second Order Uniformly Convergent Scheme for a Singularly Perturbed Initial Value Problem
dc.authorscopusid | 17233530700 | |
dc.authorscopusid | 16309407500 | |
dc.authorscopusid | 57188691390 | |
dc.authorwosid | Xu, Aimin/K-4332-2019 | |
dc.contributor.author | Cen, Zhongdi | |
dc.contributor.author | Erdogan, Fevzi | |
dc.contributor.author | Xu, Aimin | |
dc.date.accessioned | 2025-05-10T17:43:10Z | |
dc.date.available | 2025-05-10T17:43:10Z | |
dc.date.issued | 2014 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Cen, Zhongdi; Xu, Aimin] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China; [Erdogan, Fevzi] Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey | en_US |
dc.description.abstract | In this paper a nonlinear singularly perturbed initial problem is considered. The behavior of the exact solution and its derivatives is analyzed, and this leads to the construction of a Shishkin-type mesh. On this mesh a hybrid difference scheme is proposed, which is a combination of the second order difference schemes on the fine mesh and the midpoint upwind scheme on the coarse mesh. It is proved that the scheme is almost second-order convergent, in the discrete maximum norm, independently of singular perturbation parameter. Numerical experiment supports these theoretical results. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China [11201430]; Ningbo Municipal Natural Science Foundation [2012A610035, 2012A610036]; Projects in Science and Technique of Ningbo Municipal of China [2012B82003] | en_US |
dc.description.sponsorship | We would like to thank the anonymous referees for several suggestions for the improvement of this paper. The work was supported by National Natural Science Foundation (Grant No. 11201430) of China, Ningbo Municipal Natural Science Foundation (Grant Nos. 2012A610035, 2012A610036), and Projects in Science and Technique of Ningbo Municipal (Grant No. 2012B82003) of China. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s11075-013-9801-0 | |
dc.identifier.endpage | 476 | en_US |
dc.identifier.issn | 1017-1398 | |
dc.identifier.issn | 1572-9265 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-84910154060 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 457 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11075-013-9801-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/15782 | |
dc.identifier.volume | 67 | en_US |
dc.identifier.wos | WOS:000342492300012 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Singular Perturbation | en_US |
dc.subject | Initial Value Problem | en_US |
dc.subject | Finite Difference Scheme | en_US |
dc.subject | Shishkin Mesh | en_US |
dc.subject | Uniform Convergence | en_US |
dc.title | An Almost Second Order Uniformly Convergent Scheme for a Singularly Perturbed Initial Value Problem | en_US |
dc.type | Article | en_US |