An Analytical Method for Solving Exact Solutions of the Nonlinear Bogoyavlenskii Equation and the Nonlinear Diffusive Predator-Prey System
dc.authorid | Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X | |
dc.authorid | Tunc, Cemil/0000-0003-2909-8753 | |
dc.authorscopusid | 55979705100 | |
dc.authorscopusid | 6603328862 | |
dc.authorwosid | Alam, Prof. Dr. Md. Nur/T-7027-2019 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.contributor.author | Alam, Md. Nur | |
dc.contributor.author | Tunc, Cemil | |
dc.date.accessioned | 2025-05-10T17:40:42Z | |
dc.date.available | 2025-05-10T17:40:42Z | |
dc.date.issued | 2016 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Alam, Md. Nur] Pabna Univ Sci & Technol, Dept Math, Pabna, Bangladesh; [Tunc, Cemil] Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey | en_US |
dc.description | Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X; Tunc, Cemil/0000-0003-2909-8753 | en_US |
dc.description.abstract | In this article, we apply the exp(-Phi(xi))-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs) via the nonlinear diffusive predator-prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator-prey system and the Bogoyavlenskii equations by the help of programming language Maple. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1016/j.aej.2016.04.024 | |
dc.identifier.endpage | 1865 | en_US |
dc.identifier.issn | 1110-0168 | |
dc.identifier.issn | 2090-2670 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-84965082106 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1855 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aej.2016.04.024 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/15290 | |
dc.identifier.volume | 55 | en_US |
dc.identifier.wos | WOS:000378931300108 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Exp(-Phi(Xi))-Expansion Method | en_US |
dc.subject | The Diffusive Predator-Prey System | en_US |
dc.subject | The Nonlinear | en_US |
dc.subject | Bogoyavlenskii Equation | en_US |
dc.subject | Exact Solutions | en_US |
dc.title | An Analytical Method for Solving Exact Solutions of the Nonlinear Bogoyavlenskii Equation and the Nonlinear Diffusive Predator-Prey System | en_US |
dc.type | Article | en_US |