YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations

dc.authorid Sakar, Mehmet Giyas/0000-0002-1911-2622
dc.authorscopusid 56790466900
dc.authorscopusid 7005872966
dc.authorscopusid 57045880100
dc.authorscopusid 54945074000
dc.authorwosid Acan, Omer/Aaq-8432-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Acan, Omer
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Al Qurashi, Maysaa Mohamed
dc.contributor.author Sakar, Mehmet Giyas
dc.date.accessioned 2025-05-10T17:28:30Z
dc.date.available 2025-05-10T17:28:30Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Acan, Omer] Siirt Univ, Fac Art & Sci, Dept Math, TR-56100 Siirt, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Al Qurashi, Maysaa Mohamed] King Saud Univ, Fac Art & Sci, Dept Math, Riyadh 11495, Saudi Arabia; [Sakar, Mehmet Giyas] Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey en_US
dc.description Sakar, Mehmet Giyas/0000-0002-1911-2622 en_US
dc.description.abstract In this paper, we propose a new type (n + 1)-dimensional reduced differential transform method (RDTM) based on a local fractional derivative (LFD) to solve (n + 1)-dimensional local fractional partial differential equations (PDEs) in Cantor sets. The presented method is named the (n + 1)-dimensional local fractional reduced differential transform method (LFRDTM). First the theories, their proofs and also some basic properties of this procedure are given. To understand the introduced method clearly, we apply it on the (n + 1)-dimensional fractal heat-like equations (HLEs) and wave-like equations (WLEs). The applications show that this new technique is efficient, simply applicable and has powerful effects in (n + 1)-dimensional local fractional problems. en_US
dc.description.sponsorship International Scientific Partnership Program ISPP at King Saud University [63] en_US
dc.description.sponsorship The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 63. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/e19070296
dc.identifier.issn 1099-4300
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85022191855
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/e19070296
dc.identifier.uri https://hdl.handle.net/20.500.14720/12062
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:000406701500006
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Reduced Differential Transform Method en_US
dc.subject Heat Like Equation en_US
dc.subject Wave Like Equation en_US
dc.subject Fractional Partial Differential Equations en_US
dc.subject Local Fractional Derivative en_US
dc.title Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations en_US
dc.type Article en_US

Files