Electrical and Photoelectrical Characterization of an Organic-Inorganic Heterojunction Based on Quinoline Yellow Dye
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Abstract
An organic-inorganic contact was fabricated by forming a thin film of quinoline yellow dye (QY) on a p-Si wafer and evaporating Al metal on the film. The current-voltage (I-V) and capacitance-voltage (C-V) measurements of Al/QY/p-Si heterostructure were applied in dark and room temperature to calculate the characteristic parameters of diode like ideality factor, barrier height and series resistance. Ideality factor and barrier height values were found as 1.23 and 0.87 eV from I-V data, respectively. The series resistance value of the device was determined as 1.8k Omega by using modified Norde function. The C-V measurements were carried out at different frequencies and it was seen that capacitance value decreased with increasing frequency. Interface state density distribution was calculated by means of I-V measurement. In addition the optical absorption of thin QY film on glass was measured and optical band gap of the film was found as 2.73 eV. Furthermore, I-V measurements of Al/QY/p-Si/Al were taken under illumination between 40 and 100 mW/cm(2). It was observed that reverse bias current of the device increased with light intensity. Thus, the heterojunction had a strong response to the light and it can be suitable for electrical and optoelectronic applications like a photodiode. (C) 2015 Elsevier Ltd. All rights reserved.
Description
Ocak, Yusuf Selim/0000-0001-8754-1720
ORCID
Keywords
Organic Dye, Heterojunction, Barrier Height, Series Resistance
Turkish CoHE Thesis Center URL
WoS Q
Q2
Scopus Q
Q1
Source
Volume
39
Issue
Start Page
569
End Page
574