YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Forecasting the Baltic Dry Index by Using an Artificial Neural Network Approach

dc.authorid Altin, Ismail/0000-0002-7587-9537
dc.authorid Unver, Bedir/0000-0002-9306-2993
dc.authorid Sahin, Bekir/0000-0003-2687-3419
dc.authorscopusid 56320162000
dc.authorscopusid 57193884565
dc.authorscopusid 57193893081
dc.authorscopusid 26533930400
dc.authorwosid Gürgen, Samet/Aag-6960-2019
dc.authorwosid Ünver, Bedir/Aal-2597-2021
dc.authorwosid Altin, Ismail/B-1076-2009
dc.authorwosid Sahin, Bekir/U-4038-2017
dc.contributor.author Sahin, Bekir
dc.contributor.author Gurgen, Samet
dc.contributor.author Unver, Bedir
dc.contributor.author Altin, Ismail
dc.date.accessioned 2025-05-10T17:10:58Z
dc.date.available 2025-05-10T17:10:58Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Sahin, Bekir] Karadeniz Tech Univ, Surmene Fac Marine Sci, Dept Shipping Business Adm, Trabzon, Turkey; [Gurgen, Samet; Unver, Bedir; Altin, Ismail] Karadeniz Tech Univ, Surmene Fac Marine Sci, Dept Naval Architecture & Marine Engn, Trabzon, Turkey; [Gurgen, Samet] Iskenderun Tech Univ, Barbaros Hayrettin Naval Architecture & Maritime, Dept Naval Architecture & Marine Engn, Antakya, Turkey; [Unver, Bedir] Yuzuncu Yil Univ, Maritime Fac, Dept Marine Engn, Van, Turkey en_US
dc.description Altin, Ismail/0000-0002-7587-9537; Unver, Bedir/0000-0002-9306-2993; Sahin, Bekir/0000-0003-2687-3419 en_US
dc.description.abstract The Baltic Dry Index (BDI) is a robust indicator in the shipping sector in terms of global economic activities, future world trade, transport capacity, freight rates, ship demand, ship orders, etc. It is hard to forecast the BDI because of its high volatility and complexity. This paper proposes an artificial neural network (ANN) approach for BDI forecasting. Data from January 2010 to December 2016 are used to forecast the BDI. Three different ANN models are developed: (i) the past weekly observation of the BDI, (ii) the past two weekly observations of the BDI, and (iii) the past weekly observation of the BDI with crude oil price. While the performance parameters of these three models are close to each other, the most consistent model is found to be the second one. Results show that the ANN approach is a significant method for modeling and forecasting the BDI and proving its applicability. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3906/elk-1706-155
dc.identifier.endpage 1684 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85048225527
dc.identifier.scopusquality Q3
dc.identifier.startpage 1673 en_US
dc.identifier.uri https://doi.org/10.3906/elk-1706-155
dc.identifier.uri https://hdl.handle.net/20.500.14720/7598
dc.identifier.volume 26 en_US
dc.identifier.wos WOS:000434009500044
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Baltic Dry Index en_US
dc.subject Forecasting en_US
dc.subject Artificial Neural Network en_US
dc.subject Crude Oil en_US
dc.subject Shipping Industry en_US
dc.title Forecasting the Baltic Dry Index by Using an Artificial Neural Network Approach en_US
dc.type Article en_US

Files