Triangles Which Are Bounded Operators on Ak
dc.authorid | Sevli, Hamdullah/0009-0003-0258-031X | |
dc.authorscopusid | 7003909633 | |
dc.authorscopusid | 15133029700 | |
dc.authorscopusid | 7004191931 | |
dc.contributor.author | Savas, E. | |
dc.contributor.author | Sevli, H. | |
dc.contributor.author | Rhoades, B. E. | |
dc.date.accessioned | 2025-05-10T17:46:03Z | |
dc.date.available | 2025-05-10T17:46:03Z | |
dc.date.issued | 2009 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Savas, E.] Istanbul Commerce Univ Uskudar, Dept Math, Istanbul, Turkey; [Sevli, H.] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, Van, Turkey; [Rhoades, B. E.] Indiana Univ, Dept Math, Bloomington, IN 47405 USA | en_US |
dc.description | Sevli, Hamdullah/0009-0003-0258-031X | en_US |
dc.description.abstract | A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a triangle T : A(k) -> A(k) for the sequence space A(k) defined as follows: A(k) := {{s(n)} : (n=1)Sigma(infinity)n(k-1)vertical bar a(n)vertical bar(k) < infinity, a(n) = s(n) - s(n-1)}. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.endpage | 231 | en_US |
dc.identifier.issn | 0126-6705 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-67949085176 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 223 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/16540 | |
dc.identifier.volume | 32 | en_US |
dc.identifier.wos | WOS:000265913500010 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Malaysian Mathematical Sciences Soc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bounded Operator | en_US |
dc.subject | Triangular Matrices | en_US |
dc.subject | A(K) Spaces | en_US |
dc.subject | Weighted Mean Methods | en_US |
dc.title | Triangles Which Are Bounded Operators on Ak | en_US |
dc.type | Article | en_US |