YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Triangles Which Are Bounded Operators on Ak

dc.authorid Sevli, Hamdullah/0009-0003-0258-031X
dc.authorscopusid 7003909633
dc.authorscopusid 15133029700
dc.authorscopusid 7004191931
dc.contributor.author Savas, E.
dc.contributor.author Sevli, H.
dc.contributor.author Rhoades, B. E.
dc.date.accessioned 2025-05-10T17:46:03Z
dc.date.available 2025-05-10T17:46:03Z
dc.date.issued 2009
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Savas, E.] Istanbul Commerce Univ Uskudar, Dept Math, Istanbul, Turkey; [Sevli, H.] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, Van, Turkey; [Rhoades, B. E.] Indiana Univ, Dept Math, Bloomington, IN 47405 USA en_US
dc.description Sevli, Hamdullah/0009-0003-0258-031X en_US
dc.description.abstract A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a triangle T : A(k) -> A(k) for the sequence space A(k) defined as follows: A(k) := {{s(n)} : (n=1)Sigma(infinity)n(k-1)vertical bar a(n)vertical bar(k) < infinity, a(n) = s(n) - s(n-1)}. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.endpage 231 en_US
dc.identifier.issn 0126-6705
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-67949085176
dc.identifier.scopusquality Q1
dc.identifier.startpage 223 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14720/16540
dc.identifier.volume 32 en_US
dc.identifier.wos WOS:000265913500010
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Malaysian Mathematical Sciences Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bounded Operator en_US
dc.subject Triangular Matrices en_US
dc.subject A(K) Spaces en_US
dc.subject Weighted Mean Methods en_US
dc.title Triangles Which Are Bounded Operators on Ak en_US
dc.type Article en_US

Files