YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparative Assessment and Optimization of Fuel Cells

dc.authorid Mert, Suha Orcun/0000-0002-7721-1629
dc.authorscopusid 37124606900
dc.authorscopusid 6506949418
dc.authorscopusid 56278550500
dc.authorwosid Mert, Suha Orçun/Aah-7300-2020
dc.authorwosid Dincer, Ibrahim/Itu-6448-2023
dc.contributor.author Mert, Suha Orcun
dc.contributor.author Ozcelik, Zehra
dc.contributor.author Dincer, Ibrahim
dc.date.accessioned 2025-05-10T17:37:38Z
dc.date.available 2025-05-10T17:37:38Z
dc.date.issued 2015
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Mert, Suha Orcun] Yuzuncu Yil Univ, Dept Chem Engn, TR-65080 Van, Turkey; [Ozcelik, Zehra] Ege Univ, Dept Chem Engn, TR-35100 Izmir, Turkey; [Dincer, Ibrahim] Univ Ontario, Inst Technol, Dept Mech Engn, Oshawa, ON L1H 7K4, Canada en_US
dc.description Mert, Suha Orcun/0000-0002-7721-1629 en_US
dc.description.abstract In this study, a comprehensive exergoeconomic analysis and a multi-objective optimization study are performed for four different types of fuel cell systems, in order to determine their maximum power production capacities, exergy efficiencies, and minimum production costs, by use of a genetic algorithm method. The investigated fuel cell types are Polymer Electrolyte Membrane (PEMFC) and Direct Methanol (DMFC) for low temperature fuel cells, and Solid Oxide (SOFC) and Molten Carbonate (MCFC) for high temperature fuel cells. The selected fuel cell systems are modeled exergetically and exergoeconomically. After modeling, the cases are studied parametrically with various available operating conditions, such as temperature, pressure, surrounding temperature and pressure, current density, and relative humidity, using the developed computer program MULOP (Multi-Objective Optimizer). For the low temperature fuel cells it is observed that the efficiencies are in the range of 10-30% and the costs are around $3-4/kW. On the other hand, for the high temperature fuel cell systems, efficiencies are in the range of 15-45% and the costs seems to be $0.003-0.01/kW. The results show that high temperature fuel cells operate more effectively for large scale applications. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.ijhydene.2014.11.050
dc.identifier.endpage 7845 en_US
dc.identifier.issn 0360-3199
dc.identifier.issn 1879-3487
dc.identifier.issue 24 en_US
dc.identifier.scopus 2-s2.0-84930378658
dc.identifier.scopusquality Q1
dc.identifier.startpage 7835 en_US
dc.identifier.uri https://doi.org/10.1016/j.ijhydene.2014.11.050
dc.identifier.uri https://hdl.handle.net/20.500.14720/14436
dc.identifier.volume 40 en_US
dc.identifier.wos WOS:000356549000048
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Exergy en_US
dc.subject Efficiency en_US
dc.subject Fuel Cell Systems en_US
dc.subject Multi-Objective Optimization en_US
dc.subject Exergoeconomics en_US
dc.subject Genetic Algorithm en_US
dc.title Comparative Assessment and Optimization of Fuel Cells en_US
dc.type Article en_US

Files