YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Essential Spectrum of the Essentially Isometric Operator

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Canadian Mathematical Soc

Abstract

Let T be a contraction on a complex, separable, infinite dimensional Hilbert space and let sigma(T) (resp. sigma(e)(T)) be its spectrum (resp. essential spectrum). We assume that T is an essentially isometric operator; that is, I-H - T* T is compact. We show that if D\sigma T(T) not equal phi, then for every f from the disc-algebra sigma(e)( f(T)) = f( sigma(e)(T)), where D is the open unit disc. In addition, if T lies in the class C-0. boolean OR C-.0, then sigma(e)( f(T)) = f( sigma(T) boolean AND Gamma), where Gamma is the unit circle. Some related problems are also discussed.

Description

Keywords

Hilbert Space, Contraction, Essentially Isometric Operator, (Essential) Spectrum, Functional Calculus

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q3

Source

Volume

57

Issue

1

Start Page

145

End Page

158