Analogues To Lie Method and Noether's Theorem in Fractal Calculus
dc.authorid | Tunc, Cemil/0000-0003-2909-8753 | |
dc.authorid | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | |
dc.authorscopusid | 25122552100 | |
dc.authorscopusid | 6603328862 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
dc.contributor.author | Golmankhaneh, Alireza Khalili | |
dc.contributor.author | Tunc, Cemil | |
dc.date.accessioned | 2025-05-10T17:34:04Z | |
dc.date.available | 2025-05-10T17:34:04Z | |
dc.date.issued | 2019 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Urmia Branch, Young Researchers & Elite Club, Orumiyeh 5716963896, Iran; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Tusba Van, Turkey | en_US |
dc.description | Tunc, Cemil/0000-0003-2909-8753; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | en_US |
dc.description.abstract | In this manuscript, we study symmetries of fractal differential equations. We show that using symmetry properties, one of the solutions can map to another solution. We obtain canonical coordinate systems for differential equations on fractal sets, which makes them simpler to solve. An analogue for Noether's Theorem on fractal sets is given, and a corresponding conservative quantity is suggested. Several examples are solved to illustrate the results. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
dc.description.sponsorship | This research was completed with the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (2221-Fellowships for Visiting Scientists and Scientists on Sabbatical Leave-2221-2018/3 period) when Alireza Khalili Golmankhaneh was a visiting scholar at Van Yuzuncu Yil University, Van, Turkey. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.3390/fractalfract3020025 | |
dc.identifier.issn | 2504-3110 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85086880034 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/fractalfract3020025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/13692 | |
dc.identifier.volume | 3 | en_US |
dc.identifier.wos | WOS:000474245900012 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Staircase Function | en_US |
dc.subject | Local Fractal Derivatives | en_US |
dc.subject | Fractal Lie Symmetry | en_US |
dc.subject | Fractal Noether'S Theorem | en_US |
dc.subject | Fractal Lie Method | en_US |
dc.title | Analogues To Lie Method and Noether's Theorem in Fractal Calculus | en_US |
dc.type | Article | en_US |