An Approximation Property of Gaussian Functions
dc.authorid | Sevli, Hamdullah/0009-0003-0258-031X | |
dc.authorscopusid | 35223455300 | |
dc.authorscopusid | 15133029700 | |
dc.authorscopusid | 14322248300 | |
dc.contributor.author | Jung, Soon-Mo | |
dc.contributor.author | Sevli, Hamdullah | |
dc.contributor.author | Sevgin, Sebaheddin | |
dc.date.accessioned | 2025-05-10T17:47:49Z | |
dc.date.available | 2025-05-10T17:47:49Z | |
dc.date.issued | 2013 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Jung, Soon-Mo] Hongik Univ, Coll Sci & Technol, Math Sect, Jochiwon 339701, South Korea; [Sevli, Hamdullah] Istanbul Commerce Univ, Fac Sci & Art, Dept Math, TR-34672 Istanbul, Turkey; [Sevgin, Sebaheddin] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey | en_US |
dc.description | Sevli, Hamdullah/0009-0003-0258-031X | en_US |
dc.description.abstract | Using the power series method, we solve the inhomogeneous linear first order differential equation y'(x) + lambda(x - mu)y(x) = Sigma(infinity)(m = 0) a(m) (x - mu)(m), and prove an approximation property of Gaussian functions. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey | en_US |
dc.description.sponsorship | This research was completed with the support of the Scientific and Technological Research Council of Turkey while the first author was a visiting scholar at Istanbul Commerce University, Istanbul, Turkey. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.scopus | 2-s2.0-84872824472 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/16894 | |
dc.identifier.wos | WOS:000320310600003 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Texas State Univ | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Linear First Order Differential Equation | en_US |
dc.subject | Power Series Method | en_US |
dc.subject | Gaussian Function | en_US |
dc.subject | Approximation | en_US |
dc.subject | Hyers-Ulam Stability | en_US |
dc.subject | Local Hyers-Ulam Stability | en_US |
dc.title | An Approximation Property of Gaussian Functions | en_US |
dc.type | Article | en_US |