Robust Stabilization of Non-Linear Non-Autonomous Control Systems With Periodic Linear Approximation
dc.authorid | Vitaliy, Slyn'Ko/0000-0002-2321-922X | |
dc.authorscopusid | 6603780508 | |
dc.authorscopusid | 6603328862 | |
dc.authorscopusid | 57205130848 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.contributor.author | Slyn'ko, V., I | |
dc.contributor.author | Tunc, Cemil | |
dc.contributor.author | Bivziuk, V. O. | |
dc.date.accessioned | 2025-05-10T17:09:37Z | |
dc.date.available | 2025-05-10T17:09:37Z | |
dc.date.issued | 2021 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Slyn'ko, V., I] Univ Wurzburg, Inst Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey; [Bivziuk, V. O.] Univ Illinois, Dept Math, Champaign, IL USA | en_US |
dc.description | Vitaliy, Slyn'Ko/0000-0002-2321-922X | en_US |
dc.description.abstract | The paper deals with the problem of stabilizing the equilibrium states of a family of non-linear non-autonomous systems. It is assumed that the nominal system is a linear controlled system with periodic coefficients. For the nominal controlled system, a new method for constructing a Lyapunov function in the quadratic form with a variable matrix is proposed. This matrix is defined as an approximate solution of the Lyapunov matrix differential equation in the form of a piecewise exponential function based on partial sums of a W. Magnus series. A stabilizing control in the form of a linear feedback with a piecewise constant periodic matrix is constructed. This control simultaneously stabilizes the considered family of systems. The estimates of the domain of attraction of an asymptotically stable equilibrium state of a closed-loop system that are common for all systems are obtained. A numerical example is given. | en_US |
dc.description.sponsorship | National Academy of Sciences of Ukraine [KPKVK 6541230] | en_US |
dc.description.sponsorship | National Academy of Sciences of Ukraine for KPKVK 6541230 `Support for the development of priority scientific research directions'. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1093/imamci/dnaa003 | |
dc.identifier.endpage | 142 | en_US |
dc.identifier.issn | 0265-0754 | |
dc.identifier.issn | 1471-6887 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85114194565 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 125 | en_US |
dc.identifier.uri | https://doi.org/10.1093/imamci/dnaa003 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/7192 | |
dc.identifier.volume | 38 | en_US |
dc.identifier.wos | WOS:000651813900007 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Oxford Univ Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Commutator Calculus | en_US |
dc.subject | Lyapunov'S Direct Method | en_US |
dc.subject | Non-Linear Control Systems | en_US |
dc.subject | Robust Control | en_US |
dc.subject | Stability | en_US |
dc.subject | Uncertain Systems | en_US |
dc.title | Robust Stabilization of Non-Linear Non-Autonomous Control Systems With Periodic Linear Approximation | en_US |
dc.type | Article | en_US |