YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Real-Time Security Risk Assessment From Cctv Using Hand Gesture Recognition

dc.authorid Koca, Murat/0000-0002-6048-7645
dc.authorscopusid 57295914300
dc.authorwosid Koca, Murat/Grr-6566-2022
dc.contributor.author Koca, Murat
dc.date.accessioned 2025-05-10T17:34:37Z
dc.date.available 2025-05-10T17:34:37Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Koca, Murat] Van Yuzuncu Yil Univ, Fac Engn, Dept Comp Engn, TR-65080 Tusba, Turkiye en_US
dc.description Koca, Murat/0000-0002-6048-7645 en_US
dc.description.abstract Closed-Circuit Television (CCTV) surveillance systems, long associated with physical security, are becoming more crucial when combined with cybersecurity measures. Combining traditional surveillance with cyber defenses is a flexible method for protecting against both physical and digital dangers. This study introduces the use of convolutional neural networks (CNNs) and hand gesture detection using CCTV data to perform real-time security risk assessments. The suggested method's emphasis on automated extraction of key information, such as identity and behavior, illustrates its special use in silent or acoustically challenging settings. This study uses deep learning techniques to develop a novel approach for detecting hand gestures in CCTV images by automatically extracting relevant features using a media-pipe architecture. For instance, it facilitates risk assessment through the use of hand gestures in noisy environments or muted audio streams. Given this method's uniqueness and efficiency, the suggested solution will be able to alert appropriate authorities in the event of a security breach. There seems to be considerable opportunity for the development of applications in several domains of security, law enforcement, and public safety, including but not limited to shopping malls, educational institutions, transportation, the armed forces, theft, abduction, etc. en_US
dc.description.sponsorship Van Yznc Yil University Scientific Research Projects Coordination Unit en_US
dc.description.sponsorship No Statement Available en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1109/ACCESS.2024.3412930
dc.identifier.endpage 84555 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85196092308
dc.identifier.scopusquality Q1
dc.identifier.startpage 84548 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2024.3412930
dc.identifier.uri https://hdl.handle.net/20.500.14720/13865
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:001252463800001
dc.identifier.wosquality Q2
dc.institutionauthor Koca, Murat
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cctv Footage en_US
dc.subject Deep Learning en_US
dc.subject Cyber Security en_US
dc.subject Hand Gesture Recognition en_US
dc.subject Media-Pipe en_US
dc.subject Metadata Extraction en_US
dc.subject Security Risk Assessment en_US
dc.title Real-Time Security Risk Assessment From Cctv Using Hand Gesture Recognition en_US
dc.type Article en_US

Files