A Fitted Approximate Method for Solving Singularly Perturbed Volterra-Fredholm Integrodifferential Equations With Integral Boundary Condition
dc.authorscopusid | 57221502698 | |
dc.authorscopusid | 22133512500 | |
dc.contributor.author | Gunes, Baransel | |
dc.contributor.author | Cakir, Musa | |
dc.date.accessioned | 2025-05-10T17:23:16Z | |
dc.date.available | 2025-05-10T17:23:16Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Gunes, Baransel; Cakir, Musa] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye | en_US |
dc.description.abstract | We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra-Fredholm integrodifferential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain an approximate solution of the presented problem. It is proved that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s11253-024-02312-z | |
dc.identifier.issn | 0041-5995 | |
dc.identifier.issn | 1573-9376 | |
dc.identifier.scopus | 2-s2.0-85200049766 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1007/s11253-024-02312-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/10823 | |
dc.identifier.wos | WOS:001290150800012 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | A Fitted Approximate Method for Solving Singularly Perturbed Volterra-Fredholm Integrodifferential Equations With Integral Boundary Condition | en_US |
dc.type | Article | en_US |